[1] Jetz W, Thomas G, Joy J, et al. The global diversity of birds in space and time[J]. Nature, 2012, 491:444-448.
[2] 闻丞, 宋晔, 张代富, 等. 猛禽:鸟中王者[J]. 森林与人类, 2013(11):8-27. Wen Cheng, Song Ye, Zhang Daifu, et al. Falcon:The king of the birds[J]. Foretst and Humanbeing, 2013(11):8-27.
[3] Bohórquez G A M, Oliveira A C. An additional bone in the sclera of the eyes of owls and the common potoo (Nictibius Griseus) and its role in the contraction of the nictitating membrane[J]. Acta Anatomica, 1998, 163(4):201-211.
[4] Birdeye[EB/OL].[2008-07-14]. https://en.wikipedia.org/wiki/File:Birdeye.jpg.
[5] Murphy C J, Dubielzig R R. The gross and microscopic structure of the golden eagle (Aquila Chrysaetos) eye[J]. Programs in Veterinary and Comparative Ophthalmology, 1993, 3:74-79.
[6] Samuelson D A. Ophthalmic anatomy[M]//Gelatt K N. Veterinary Ophthalmology. 3rd ed. Baltimore:Lippincott Williams & Wilkins, 1991:31-150.
[7] Evans H E, Martin G R. Organa sensuum[Organa sensoria] [M]//Baumel J J, King A S, Breazile J E, et al. Handbook of Avian Anatomy. Cambridge:University of Cambridge, Nuttall Ornithological Club, 1993(23):585-611.
[8] Kern T J. Disorders of the special senses[M]//Altman R B, Clubb S L, Dorrestein G M, et al. Avian Medicine and Surgery. Philadelphia:WB Saunders, 1997:563-589.
[9] Oliphant L W. Cytology and pigments of non-melanophore chromatophores in the Avian Iris[J]. Progress in Clinical and Biological Research, 1988, 256:65-82.
[10] Oliphant L W, Johnson M R, Murphy C, et al. The musculature and pupillary response of the great horned owl iris[J]. Experimental Eye Research, 1983, 37(6):583-595.
[11] King A S, McLelland J. Special sense organs[M]//Birds, Their Structure and Function. London:Baillière Tindall, 1984:284-314.
[12] Jones M P, Pierce K E, Ward D. Avian vision:A review of form and function with special consideration to birds of prey[J]. Journal of Exotic Pet Medicine, 2007, 16(2):69-87.
[13] Shlaer R. An eagle's eye:Quality of the retinal image[J]. Science, 1972, 176(4037):920-922.
[14] Ohayon S, Harmening W, Wagner H, et al. Through a barn owl's eyes:Interactions between scene content and visual attention[J]. Biological Cybernetics, 2008, 98(2):115-132.
[15] Lord R D. A comparative study of the eyes of some falconiform and passeriform birds[J]. American Midland Naturalist, 1956, 56(2):325-344.
[16] Fite K V, Rosenfield-Wessels S. A comparative study of deep avian foveas[J]. Brain, Behavior and Evolution, 1975, 12(1/2):97-115.
[17] Hodos W, Miller R F, Fite K V. Age-dependent changes in visual acuity and retinal morphology in pigeons[J]. Vision Research, 1991, 31(4):669-677.
[18] Katzir G, Howland H C. Corneal power and underwater accommodation in great cormorants (phalacrocorax carbo sinensis)[J]. Journal of Experimental Biology, 2003, 206(5):833-841.
[19] Schaeffel F, Howland H C, Farkas L. Natural accommodation in the growing chicken[J]. Vision Research, 1986, 26(12):1977-1993.
[20] Levy B, Sivak J G. Mechanisms of accommodation in the bird eye[J]. Journal of Comparative Physiology, 1980, 137(3):267-272.
[21] Murphy C J, Howland H C. Owl eyes:Accommodation, corneal curvature and refractive state[J]. Journal of Comparative Physiology, 1983, 151(3):277-284.
[22] Sivak J G. Through the lens clearly:Phylogeny and development:the proctor lecture[J]. Investigative Ophthalmology & Visual Science, 2004, 45(3):740-747.
[23] 寿天德. 视觉信息处理的脑机制[M]. 合肥:中国科学技术大学出版社, 2010. Shou tiande. Brain mechanisms of visual information processing[M]. Hefei:University of Science and Technology of China Press, 2010.
[24] 唐宗湘, 马殷华. 鸟类视觉系统的离顶盖通路[J]. 广西师范大学学报(自然科学版), 2004, 22(4):78-82. Tang Zongxiang, Ma Yinhua. The toctofugal pathway in birds visual system[J]. Journal of Guangxi Normal University(Natural Science Edition), 2004, 22(4):78-82.
[25] Zhang T, Fu Y X, Hu J, et al. Receptive field characteristics of neurons in the nucleus of the basal optic root in pigeons.[J]. Neuroscience, 1999, 91(1):33-40.
[26] Palacios A G, Goldsmith T H. Photocurrents in retinal rods of pigeons (Columba Livia):Kinetics and spectral sensitivity[J]. The Journal of Physiology, 1993, 471(1):817-829.
[27] Neitz J, Geist T, Jacobs G H. Color vision in the dog[J]. Visual Neuroscience, 1989, 3(2):119-125.
[28] Carroll J, Murphy C J, Neitz M, et al. Photopigment basis for dichromatic color vision in the horse[J]. Journal of Vision, 2001, 1(2):2.
[29] Ringo J, Wolbarsht M L, Wagner H G, et al. Trichromatic vision in the cat[J]. Science, 1977, 198(4318):753-755.
[30] Chen D M, Collins J S, Goldsmith T H. The ultraviolet receptor of bird retinas[J]. Science, 1984, 225(4659):337-340.
[31] Goldsmith T H. Hummingbirds see near ultraviolet light[J]. Science, 1980, 207(4432):786-788.
[32] Güntürkün O. Sensory physiology:Vision[M]//Whittow G C. Sturkies Avian Physiology. 5th ed. New York:Academic Press, 2000:1-19.
[33] Emmerton J, Delhis J D. Wavelength discrimination in the ‘visible’ and ultraviolet spectrum by pigeons[J]. Journal of Comparative Physiology, 1980, 141(1):47-52.
[34] Jane S D, Bowmaker J K. Tetrachromatic colour vision in the duck (Anas Platyrhynchos L.):Microspectrophotometry of visual pigments and oil droplets[J]. Journal of Comparative Physiology A, 1988, 162(2):225-235.
[35] Livingstone M. Vision and art:The biology of seeing[M]. New York:Harry N. Abrams, Incorporated Company, 2002:27-35.
[36] Bowmaker J K, Martin G R. Visual pigments and colour vision in a nocturnal bird, Strix aluco (tawny owl)[J]. Vision Research, 1978, 18(9):1125-1130.
[37] Viitala J, Korplmäki E, Palokangas P, et al. Attraction of kestrels to vole scent marks visible in ultraviolet light[J]. Nature, 1995, 373(6513):425.
[38] Orlowski J, Harmening W, Wagner H. Night vision in barn owls:Visual acuity and contrast sensitivity ender dark adaptation[J]. Journal of Vision, 2012, 12(13):1-8.
[39] Braekevelt C R, Smith S A, Smith B J. Fine structure of the retinal photoreceptors of the barred owl (strix varia)[J]. Histology and Histopathology, 1996, 11(1):79-88.
[40] Kreithen M L, Keeton W T. Detection of polarized light by the homing pigeon, columba livia[J]. Journal of Comparative Physiology, 1974, 89(1):83-92.
[41] Meyer D B. The avian eye and its adaptations[M]//Crescitelli F. The Visual System in Vertebrates. New York:SpringerVerlag, 1977:549-611.
[42] Walls G L. Significance of the foveal depression[J]. Archives of Ophthalmology, 1937, 18(6):912-919.
[43] Inzunza O, Bravo H, Smith R L, et al. Topography and morphology of retinal ganglion cells in falconiforms:A study on predatory and carrion-eating birds[J]. The Anatomical Record, 1991, 229(2):271-277.
[44] Snyder A W, Miller W H. Telephoto lens system of falconiform eyes[J]. Nature, 1978, 275(5676):127.
[45] Hirsch J. Falcon visual sensitivity to grating contrast[J]. Nature, 1982, 300(5887):57-58.
[46] Tucker V A. The deep fovea, sideways vision and spiral flight paths in raptors[J]. Journal of Experimental Biology, 2000, 203(24):3745-3754.
[47] Tucker V A. Gliding flight:Drag and torque of a hawk and a falcon with straight and turned deads, and a lower value for the parasite drag coefficient[J]. Journal of Experimental Biology, 2000, 203(24):3733-3744.
[48] Tucker V A, Tucker A E, Akers K, et al. Curved flight paths and sideways vision in peregrine falcons (falco peregrinus)[J]. Journal of Experimental Biology, 2000, 203(24):3755-3763.
[49] Ponitz B, Schmitz A, Fischer D, et al. Diving-flight aerodynamics of a peregrine falcon (falco peregrinus)[J]. PLoS One, 2014, 9(2):e86506.
[50] Locket N A. Problems of deep foveas[J]. Clinical & Experimental Ophthalmology, 1992, 20(4):281-295.
[51] Pumphrey R J. The theory of the fovea[J]. Journal of Experimental Biology, 1948, 25(3):299-312.
[52] Gaffney M F, Hodos W. The visual acuity and refractive state of the american kestrel (falco sparverius)[J]. Vision Research, 2003, 43(19):2053-2059.
[53] Reymond L. Spatial visual acuity of the eagle aquila audax:A behavioural, optical and anatomical investigation[J]. Vision Research, 1985, 25(10):1477-1491.
[54] Reymond L. Spatial visual acuity of the falcon, falco berigora:A behavioural, optical and anatomical investigation[J]. Vision Research, 1987, 27(10):1859-1874.
[55] Waldvogel J A. The bird's eye view[J]. American Scientist, 1990, 78(4):342-353.
[56] Vallortigara G, Cozzutti C, Tommasi L, et al. How birds use their eyes:Opposite left-right specialization for the lateral and frontal visual hemifield in the domestic chick[J]. Current Biology, 2001, 11(1):29-33.
[57] O'Rourke C T, Hall M I, Pitlik T, et al. Hawk eyes I:Diurnal raptors differ in visual fields and degree of eye movement[J]. PLoS One, 2010, 5(9):e12802.
[58] O'Rourke C T, Pitlik T, Hoover M, et al. Hawk eyes Ⅱ:Diurnal raptors differ in head movement strategies when scanning from perches[J]. PloS One, 2010, 5(9):e12169.
[59] Martin G R. Total panoramic vision in the mallard duck, anas platyrhynchos[J]. Vision Research, 1986, 26(8):1303-1305.
[60] Martin G R, Katzir G. Visual fields in short-toed eagles, circaetus gallicus (accipitridae), and the function of binocularity in birds[J]. Brain, Behavior and Evolution, 1999, 53(2):55-66.
[61] Martin G R. Visual Fields and their functions in birds[J]. Journal of Ornithology, 2007, 148(2):547-562.
[62] Martin G R, Portugal S J, Murn C P. Visual fields, foraging and collision vulnerability in gyps vultures[J]. Ibis, 2012, 154(3):626-631.
[63] Hughes A. The topography of vision in mammals of contrasting life style:Comparative optics and retinal organisation[M]//Crescitelli F. The Visual System in Vertebrates. Berlin:Springer-Verlag, 1977:613-756.
[64] Fox R, Lehmkuhle S W, Westendorf D H. Falcon visual acuity[J]. Science, 1976, 192(4236):263-265.
[65] Dvorak D, Mark R, Reymond L. Factors underlying falcon grating acuity[J]. Nature, 1983, 303(5919):729-730.
[66] Potier S, Bonadonna F, Kelber A, et al. Visual acuity in an opportunistic raptor, the chimango caracara (milvago chimango)[J]. Physiology & Behavior, 2016, 157:125-128.
[67] Martin G R, Gordon I E. Increment-threshold spectral sensitivity in the tawny owl (strix aluco)[J]. Vision Research, 1974, 14(8):615-621.
[68] Wathey J C, Pettigrew J D. Quantitative analysis of the retinal ganglion cell layer and optic nerve of the barn owl Tyto Alba[J]. Brain, Behavior and Evolution, 1989, 33(5):279-292.
[69] Rucci M, Wray J, Edelman G M. Robust localization of auditory and visual targets in a robotic barn owl[J]. Robotics and Autonomous Systems, 2000, 30(1):181-193.
[70] Schaeffel F, Wagner H. Emmetropization and optical development of the eye of the barn owl (Tytoalba)[J]. Journal of Comparative Physiology A, 1996, 178(4):491-498.
[71] Harmening W M, Göbbels K, Wagner H. Vernier acuity in barn owls[J]. Vision Research, 2007, 47(7):1020-1026.
[72] Harmening W M, Nikolay P, Orlowski J, et al. Spatial contrast sensitivity and grating acuity of barn owls[J]. Journal of Vision, 2009, 9(7):1-12.
[73] Floreano D, Pericet-Camara R, Viollet S, et al. Miniature curved artificial compound eyes[J]. Proceedings of the National Academy of Sciences, 2013, 110(23):9267-9272.
[74] Zahar Y, Wagner H, Gutfreund Y. Responses of tectal neurons to contrasting stimuli:An electrophysiological study in the barn owl[J]. PloS One, 2012, 7(6):e39559.
[75] Orlowski J, Beissel C, Rohn F, et al. Visual pop-out in barn owls:Human-like behavior in the avian brain[J]. Journal of Vision, 2015, 15(14):4.
[76] Haddon C, Smithers L, Schneider M S, et al. Multiple delta genes and lateral inhibition in zebrafish primary neurogenesis[J]. Development, 1998, 125(3):359-370.
[77] Fox R, Lehmkuhle S W, Bush R C. Stereopsis in the falcon[J]. Science, 1977, 197(4298):79-81.
[78] Ruggeri M, Major J C, McKeown C, et al. Retinal structure of birds of prey revealed by ultra-high resolution spectral-domain optical coherence tomography[J]. Investigative Ophthalmology & Visual Science, 2010, 51(11):5789-5795.
[79] Ruggeri M, Major J C, McKeown C, et al. In vivo imaging of raptor retina with ultra high resolution spectral domain optical coherence tomography[C]//Ophthalmic Technologies XVⅢ. San Jose:International Society for Optics and Photonics, 2008, 6844:684402.
[80] 李言俊, 张科. 视觉仿生成像制导技术及应用[M]. 北京:国防工业出版社, 2006. Li Yanjun, Zhang Ke. Vision bionics image guidance technique and application[M]. Beijing:National Defense Industry Press, 2006.
[81] Duan H B, Deng Y M, Wang X H, et al. Biological eagle-eyebased visual imaging guidance simulation platform for unmanned flying vehicles[J]. Aerospace & Electronic Systems Magazine IEEE, 2013, 28(12):36-45.
[82] Duan H B, Zhang Q F, Deng Y M, et al. Biologically eagleeye-based autonomous aerial refueling for unmanned aerial vehicles[J]. Chinese Journal of Scientific Instrument, 2014, 35(7):1450-1457.
[83] 赵国治, 段海滨. 仿鹰眼视觉技术研究进展[J]. 中国科学:技术科学, 2017, 47:514-523. Zhao Guozhi, Duan Haibin. Progresses in biological eagleeye vision technology(in Chinese)[J]. Scientia Sinica Technologica, 2017, 47:514-523.
[84] Lin L, Ramesh B, Xiang C. Biologically inspired composite vision system for multiple depth-of-field vehicle tracking and speed detection[C]//Asian Conference on Computer Vision. Berlin:Springer-Verlag, 2014:473-486.
[85] 刘颜. 妙用仿生技术的鹰眼镜头[J]. 军事文摘, 2015(8):26. Liu Yan. Magic effect of the bionic technology in designing the eagle-eyed lens[J]. Military Digest, 2015(8):26.
[86] 常军, 冯驰, 查为懿, 等. 双小凹局部高分辨率成像系统:CN104102018A[P]. 2014-10-15. Chang Jun, Feng Chi, Zha Weiyi, et al. Bifoveal based local high resolution imaging system:CN104102018A[P]. 2014-10-15.
[87] 段海滨, 邓亦敏, 孙永斌. 一种可分辨率变换的仿鹰眼视觉成像装置及其成像方法:CN105516688A[P]. 2016-04-20.Duan Haibin, Deng Yimin, Sun Yongbin. An eagle eye based variable resolution imaging device and method:CN1055166-88A[P]. 2016-04-20.
[88] Aaron D L, Ram M N, Timothy J K, et al. Analysis and implementation of the foveated vision of the raptor eye[C]//Image Sensing Technologies:Materials, Devices, Systems, and Applications Ⅲ. Baltimor:International Society for Optics and Photonics, 2016, 9854:98540T.