专题:人工智能

深度学习在海洋大数据挖掘中的应用

  • 孙苗, 符昱, 吕憧憬, 姜晓轶
展开
  • 国家海洋信息中心, 国家海洋局数字海洋科学技术重点实验室, 天津 300171
孙苗,博士,研究方向为海洋大数据挖掘分析,电子信箱:miaosun_public@163.com

收稿日期: 2018-06-01

  修回日期: 2018-08-29

  网络出版日期: 2018-09-18

基金资助

国家重点研发计划项目(2016YFC1401900)

Deep learning application in marine big data mining

  • SUN Miao, FU Yu, LÜ Chongjing, JIANG Xiaoyi
Expand
  • National Marine Data and Information Service;Key Laboratory of Digital Ocean of State Oceanic Administration, Tianjin 300171, China

Received date: 2018-06-01

  Revised date: 2018-08-29

  Online published: 2018-09-18

摘要

介绍了深度学习的关键发展节点和应用发展历程,分析了深度学习在国内外主要领域的发展现状;概述了多个深度学习的关键算法原理,分析了深度学习在海洋数据重构、分类识别和预测等海洋大数据挖掘中的相关应用;提出了深度学习未来可能面临的问题,并从加强顶层设计、信息安全和强化算法鲁棒性等方面,展望了深度学习在海洋大数据挖掘中的应用前景。

本文引用格式

孙苗, 符昱, 吕憧憬, 姜晓轶 . 深度学习在海洋大数据挖掘中的应用[J]. 科技导报, 2018 , 36(17) : 83 -90 . DOI: 10.3981/j.issn.1000-7857.2018.17.010

Abstract

We introduce the development and application background of deep learning and analyze the state-of-the-art deep learning technology in related domains. The key algorithms of deep learning and their related applications in the marine field are given from the aspects of marine data reconstruction, classification, and prediction. Furthermore, we also discuss the potential problems of the deep learning application in marine big data mining. The prospect of deep learning application is discussed in terms of optimizing the mechanism, strengthening information security and intensifying algorithm robustness.

参考文献

[1] 孙苗. 中尺度涡旋识别与追踪算法研究[D]. 青岛:中国海洋大学, 2017. Sun Miao. Research on mesoscale eddy detection and tracking algorithm[D]. Qingdao:Ocean University of China, 2017.
[2] Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553):436.
[3] Mcculloch W S, Pitts W. A logical calculus of ideas immanent in nervous activity[J]. Bulletin of Mathematical Biophysics. 1943, 5(4):115-133.
[4] 郑泽宇, 梁博文, 顾思宇. Tensorflow:实战Google深度学习框架[M]. 北京:电子工业出版社, 2018:6-10. Zheng Zeyu, Liang Bowen, Gu Siyu. Tensorflow:Google deep learning framework[M]. Beijing:Publishing House of Electronics Industry, 2018:6-10.
[5] Williams D, Hinton G. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088):533-538.
[6] Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
[7] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, 1997, 9(8):1735-1780.
[8] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
[9] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//2012 Advances in Neural Information Processing Systems. Lake Tahoe:NIPS Foundation, 2012, 1(2):4.
[10] Zhao Y, Juang B H. Stranded Gaussian mixture hidden Markov models for robust speech recognition[C]//2012 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ:IEEE, 2012:4301-4304.
[11] Abadi M, Barham P, Chen J, et al. Tensor flow:A system for large-scale machine learning[C]//USENIX Operating System Design and Implementation. 2016, 16:265-283. https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf.
[12] Silver D, Huang A, Maddison C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587):484-489.
[13] 侯雪燕, 洪阳, 张建民, 等. 海洋大数据:内涵、应用及平台建设[J]. 海洋通报, 2017, 36(4):361-369. Hou Xueyan, Hong Yang, Zhang Jianmin, et al. Marine big data:Concept, applications and platform construction[J]. Marine Science Bulletin, 2017, 36(4):361-369.
[14] Orenstein E C, Beijbom O, Peacock E E, et al. Whoi-plankton-A large scale fine grained visual recognition benchmark dataset for plankton classification[J]. arXiv preprint, 2015, arXiv:1510.00745.
[15] Bentes C, Velotto D, Lehner S. Target classification in oceanographic SAR images with deep neural networks:Architecture and initial results[C]//Geoscience and Remote Sensing Symposium. Piscataway, NJ:IEEE, 2015:3703-3706.
[16] Zeng X, Li Y, He R. Predictability of the loop current variation and eddy shedding process in the Gulf of Mexico using an artificial neural network approach[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32(5):1098-1111.
[17] Ducournau A, Fablet R. Deep learning for ocean remote sensing:An application of convolutional neural networks for super-resolution on satellite-derived SST data[C]//Pattern Recogniton in Remote Sensing. Piscataway, NJ:IEEE, 2016:1-6.
[18] Lima E, Sun X, Dong J, et al. Learning and transferring convolutional neural network knowledge to ocean front recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(3):354-358.
[19] Yang Y, Dong J, Sun X, et al. A CFCC-LSTM model for sea surface temperature prediction[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(2):207-211.
[20] 刘大伟, 韩玲, 韩晓勇. 基于深度学习的高分辨率遥感影像分类研究[J]. 光学学报, 2016, 36(4):298-306. Liu Dawei, Han Ling, Han Xiaoyong. High spatial resolution remote sensing image classification based on deep learning[J]. Acta Optica Sinica, 2016, 36(4):298-306.
[21] Jordan M I. Serial order:A parallel distributed processing approach[J]. Advances in psychology, 1997, 121:471-495.
[22] 莫凌飞, 蒋红亮, 李煊鹏. 基于深度学习的视频预测研究综述[J]. 智能系统学报, 2018(1):85-96. Mo Lingfei, Jiang Hongliang, Li Xuanpeng. Review of deep learning-based video prediction[J]. CAAI Transactions on Intelligent Systems, 2018(1):85-96.
[23] 朱江, 徐迎春, 王赐震, 等. 海温数值预报资料同化试验[J]. 海洋学报, 1995, 17(6):9-20. Zhu Jiang, Xu Yingchun, Wang Cizhen, et al. Sea surface temperature data assimilation test[J]. Acta Oceanologica Sinica, 1995, 17(6):9-20.
[24] 马寨璞, 井爱芹. 动态最优插值方法及其同化应用研究[J]. 河北大学报(自然科学版), 2004, 24(6):574-580. Ma Zhaipu, Jing Aiqin. Dynamic interpolation and its application in data assimilation[J]. Journal of Hebei University (Natural Science Edition), 2004, 24(6):574-580.
[25] Courtier P, Thépaut J N, Hollingsworth A. A strategy for operational implementation of 4D-Var, using an incremental approach[J]. Quarterly Journal of the Royal Meteorological Society, 1994, 120(519):1367-1387.
[26] Everson R, Cornillon P, Sirovich L, et al. An empirical eigenfunction analysis of sea surface temperatures in the western North Atlantic[J]. Journal of Physical Oceanography, 1997, 27(3):468-479.
[27] Thomson R E, Emery W J. Data analysis methods in physical oceanography[M]. Oxford:Newnes, 2014.
[28] Reynolds R W, Smith T M. Improved global sea surface temperature analyses using optimum interpolation[J]. Journal of Climate, 1994, 7(6):929-948.
[29] Smith T M, Reynolds R W, Livezey R E, et al. Reconstruction of historical sea surface temperatures using empirical orthogonal functions[J]. Journal of Climate, 1996, 9(6):1403-1420.
[30] Chelton D B, Gaube P, Schlax M G, et al. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll[J]. Science, 2011, 334(6054):328-332.
[31] Isern-Fontanet J, García-Ladona E, Font J. Identification of marine eddies from altimetric maps[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(5):772-778.
[32] Isern-Fontanet J, García-Ladona E, Font J. Vortices of the Mediterranean Sea:An altimetric perspective[J]. Journal of physical oceanography, 2006, 36(1):87-103.
[33] Morrow R, Birol F, Griffin D, et al. Divergent pathways of cyclonic and anti-cyclonic ocean eddies[J]. Geophysical Research Letters, 2004, 31(24). https://doi.org/10.1029/2004GL-020974.
[34] Chelton D B, Schlax M G, Samelson R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15):87-101.
[35] Xiu P, Chai F, Shi L, et al. A census of eddy activities in the South China Sea during 1993-2007[J]. Journal of Geophysical Research:Oceans, 2010, 115(C3):C03012. https://doi.org/10.1029/2009JC005657.
[36] Sadarjoen I A, Post F H. Detection, quantification, and tracking of vortices using streamline geometry[J]. Computers & Graphics, 2000, 24(3):333-341.
[37] Segond M. Algorithmes bio-mimetiques pour la reconnaissance de formes et l'apprentissage[D]. Littoral:University of littoral Côte d'Opale, 2006.
[38] Chaigneau A, Eldin G, Dewitte B. Eddy activity in the four major upwelling systems from satellite altimetry(1992-2007)[J]. Progress in Oceanography, 2009, 83(1/2/3/4):117-123.
[39] Chaigneau A, Gizolme A, Grados C. Mesoscale eddies off Peru in altimeter records:Identification algorithms and eddy spatio-temporal patterns[J]. Progress in Oceanography, 2008, 79(2/3/4):106-119.
[40] Doglioli A M, Blanke B, Speich S, et al. Tracking coherent structures in a regional ocean model with wavelet analysis:Application to Cape Basin eddies[J]. Journal of Geophysical Research:Oceans, 2007, 112(C5). https://doi.org/10.1029/2006-JC003952.
[41] Souza J M A C D, De Boyer Montegut C, Le Traon P Y. Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean[J]. Ocean Science, 2011, 7(3):317-334.
[42] Mason E, Pascual A, McWilliams J C. A new sea surface height-based code for oceanic mesoscale eddy tracking[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(5):1181-1188.
[43] Srivastava N, Mansimov E, Salakhudinov R. Unsupervised learning of video representations using lstms[C]//International Conference on Machine Learning. Lille, France 2014:843-852. http://proceedings.mlr.press/v37/srivastava15.pdf.
[44] Zhang Q, Wang H, Dong J, et al. Prediction of sea surface temperature using long short-term memory[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10):1745-1749.
文章导航

/