[1] 孙苗. 中尺度涡旋识别与追踪算法研究[D]. 青岛:中国海洋大学, 2017. Sun Miao. Research on mesoscale eddy detection and tracking algorithm[D]. Qingdao:Ocean University of China, 2017.
[2] Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553):436.
[3] Mcculloch W S, Pitts W. A logical calculus of ideas immanent in nervous activity[J]. Bulletin of Mathematical Biophysics. 1943, 5(4):115-133.
[4] 郑泽宇, 梁博文, 顾思宇. Tensorflow:实战Google深度学习框架[M]. 北京:电子工业出版社, 2018:6-10. Zheng Zeyu, Liang Bowen, Gu Siyu. Tensorflow:Google deep learning framework[M]. Beijing:Publishing House of Electronics Industry, 2018:6-10.
[5] Williams D, Hinton G. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088):533-538.
[6] Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
[7] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, 1997, 9(8):1735-1780.
[8] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
[9] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//2012 Advances in Neural Information Processing Systems. Lake Tahoe:NIPS Foundation, 2012, 1(2):4.
[10] Zhao Y, Juang B H. Stranded Gaussian mixture hidden Markov models for robust speech recognition[C]//2012 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ:IEEE, 2012:4301-4304.
[11] Abadi M, Barham P, Chen J, et al. Tensor flow:A system for large-scale machine learning[C]//USENIX Operating System Design and Implementation. 2016, 16:265-283. https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf.
[12] Silver D, Huang A, Maddison C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587):484-489.
[13] 侯雪燕, 洪阳, 张建民, 等. 海洋大数据:内涵、应用及平台建设[J]. 海洋通报, 2017, 36(4):361-369. Hou Xueyan, Hong Yang, Zhang Jianmin, et al. Marine big data:Concept, applications and platform construction[J]. Marine Science Bulletin, 2017, 36(4):361-369.
[14] Orenstein E C, Beijbom O, Peacock E E, et al. Whoi-plankton-A large scale fine grained visual recognition benchmark dataset for plankton classification[J]. arXiv preprint, 2015, arXiv:1510.00745.
[15] Bentes C, Velotto D, Lehner S. Target classification in oceanographic SAR images with deep neural networks:Architecture and initial results[C]//Geoscience and Remote Sensing Symposium. Piscataway, NJ:IEEE, 2015:3703-3706.
[16] Zeng X, Li Y, He R. Predictability of the loop current variation and eddy shedding process in the Gulf of Mexico using an artificial neural network approach[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32(5):1098-1111.
[17] Ducournau A, Fablet R. Deep learning for ocean remote sensing:An application of convolutional neural networks for super-resolution on satellite-derived SST data[C]//Pattern Recogniton in Remote Sensing. Piscataway, NJ:IEEE, 2016:1-6.
[18] Lima E, Sun X, Dong J, et al. Learning and transferring convolutional neural network knowledge to ocean front recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(3):354-358.
[19] Yang Y, Dong J, Sun X, et al. A CFCC-LSTM model for sea surface temperature prediction[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(2):207-211.
[20] 刘大伟, 韩玲, 韩晓勇. 基于深度学习的高分辨率遥感影像分类研究[J]. 光学学报, 2016, 36(4):298-306. Liu Dawei, Han Ling, Han Xiaoyong. High spatial resolution remote sensing image classification based on deep learning[J]. Acta Optica Sinica, 2016, 36(4):298-306.
[21] Jordan M I. Serial order:A parallel distributed processing approach[J]. Advances in psychology, 1997, 121:471-495.
[22] 莫凌飞, 蒋红亮, 李煊鹏. 基于深度学习的视频预测研究综述[J]. 智能系统学报, 2018(1):85-96. Mo Lingfei, Jiang Hongliang, Li Xuanpeng. Review of deep learning-based video prediction[J]. CAAI Transactions on Intelligent Systems, 2018(1):85-96.
[23] 朱江, 徐迎春, 王赐震, 等. 海温数值预报资料同化试验[J]. 海洋学报, 1995, 17(6):9-20. Zhu Jiang, Xu Yingchun, Wang Cizhen, et al. Sea surface temperature data assimilation test[J]. Acta Oceanologica Sinica, 1995, 17(6):9-20.
[24] 马寨璞, 井爱芹. 动态最优插值方法及其同化应用研究[J]. 河北大学报(自然科学版), 2004, 24(6):574-580. Ma Zhaipu, Jing Aiqin. Dynamic interpolation and its application in data assimilation[J]. Journal of Hebei University (Natural Science Edition), 2004, 24(6):574-580.
[25] Courtier P, Thépaut J N, Hollingsworth A. A strategy for operational implementation of 4D-Var, using an incremental approach[J]. Quarterly Journal of the Royal Meteorological Society, 1994, 120(519):1367-1387.
[26] Everson R, Cornillon P, Sirovich L, et al. An empirical eigenfunction analysis of sea surface temperatures in the western North Atlantic[J]. Journal of Physical Oceanography, 1997, 27(3):468-479.
[27] Thomson R E, Emery W J. Data analysis methods in physical oceanography[M]. Oxford:Newnes, 2014.
[28] Reynolds R W, Smith T M. Improved global sea surface temperature analyses using optimum interpolation[J]. Journal of Climate, 1994, 7(6):929-948.
[29] Smith T M, Reynolds R W, Livezey R E, et al. Reconstruction of historical sea surface temperatures using empirical orthogonal functions[J]. Journal of Climate, 1996, 9(6):1403-1420.
[30] Chelton D B, Gaube P, Schlax M G, et al. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll[J]. Science, 2011, 334(6054):328-332.
[31] Isern-Fontanet J, García-Ladona E, Font J. Identification of marine eddies from altimetric maps[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(5):772-778.
[32] Isern-Fontanet J, García-Ladona E, Font J. Vortices of the Mediterranean Sea:An altimetric perspective[J]. Journal of physical oceanography, 2006, 36(1):87-103.
[33] Morrow R, Birol F, Griffin D, et al. Divergent pathways of cyclonic and anti-cyclonic ocean eddies[J]. Geophysical Research Letters, 2004, 31(24). https://doi.org/10.1029/2004GL-020974.
[34] Chelton D B, Schlax M G, Samelson R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15):87-101.
[35] Xiu P, Chai F, Shi L, et al. A census of eddy activities in the South China Sea during 1993-2007[J]. Journal of Geophysical Research:Oceans, 2010, 115(C3):C03012. https://doi.org/10.1029/2009JC005657.
[36] Sadarjoen I A, Post F H. Detection, quantification, and tracking of vortices using streamline geometry[J]. Computers & Graphics, 2000, 24(3):333-341.
[37] Segond M. Algorithmes bio-mimetiques pour la reconnaissance de formes et l'apprentissage[D]. Littoral:University of littoral Côte d'Opale, 2006.
[38] Chaigneau A, Eldin G, Dewitte B. Eddy activity in the four major upwelling systems from satellite altimetry(1992-2007)[J]. Progress in Oceanography, 2009, 83(1/2/3/4):117-123.
[39] Chaigneau A, Gizolme A, Grados C. Mesoscale eddies off Peru in altimeter records:Identification algorithms and eddy spatio-temporal patterns[J]. Progress in Oceanography, 2008, 79(2/3/4):106-119.
[40] Doglioli A M, Blanke B, Speich S, et al. Tracking coherent structures in a regional ocean model with wavelet analysis:Application to Cape Basin eddies[J]. Journal of Geophysical Research:Oceans, 2007, 112(C5). https://doi.org/10.1029/2006-JC003952.
[41] Souza J M A C D, De Boyer Montegut C, Le Traon P Y. Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean[J]. Ocean Science, 2011, 7(3):317-334.
[42] Mason E, Pascual A, McWilliams J C. A new sea surface height-based code for oceanic mesoscale eddy tracking[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(5):1181-1188.
[43] Srivastava N, Mansimov E, Salakhudinov R. Unsupervised learning of video representations using lstms[C]//International Conference on Machine Learning. Lille, France 2014:843-852. http://proceedings.mlr.press/v37/srivastava15.pdf.
[44] Zhang Q, Wang H, Dong J, et al. Prediction of sea surface temperature using long short-term memory[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10):1745-1749.