综述

无人机自主集群技术研究展望

  • 段海滨 ,
  • 邱华鑫 ,
  • 陈琳 ,
  • 魏晨
展开
  • 北京航空航天大学自动化科学与电气工程学院, 飞行器控制一体化技术国防科技重点实验室, 北京 100083
段海滨,教授,研究方向为无人机仿生集群飞行控制、计算机仿生视觉和仿生智能计算,电子信箱:hbduan@buaa.edu.cn

收稿日期: 2018-07-05

  修回日期: 2018-10-16

  网络出版日期: 2018-11-27

基金资助

国家自然科学基金重点项目(61333004)

Prospects on unmanned aerial vehicle autonomous swarm technology

  • DUAN Haibin ,
  • QIU Huaxin ,
  • CHEN Lin ,
  • WEI Chen
Expand
  • Science and Technology on Aircraft Control Laboratory;School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China

Received date: 2018-07-05

  Revised date: 2018-10-16

  Online published: 2018-11-27

摘要

动态不确定环境和复杂任务决定了无人机系统势必朝着集群化、自主化和智能化方向发展,具备共识自主性的无人机集群可无需任何集中规划或直接通信完成复杂智能行为。从无人机自主性内涵出发,讨论了无人机自主集群的概念、特点、优势及可能的作战形式,从人机共融、变体设计、人工智能和集群对抗方面探讨了无人机自主集群的发展趋势及无人机集群应对反无人机技术的必要性,从军用和民用领域分析了无人机自主集群的可能应用前景,从战略规划、研发模式、系统协调、交叉学科、国防应用及市场培育等方面探讨了无人机自主集群技术的发展方向。

本文引用格式

段海滨 , 邱华鑫 , 陈琳 , 魏晨 . 无人机自主集群技术研究展望[J]. 科技导报, 2018 , 36(21) : 90 -98 . DOI: 10.3981/j.issn.1000-7857.2018.21.012

Abstract

Swarm, autonomy and intelligence are the development directions of unmanned aerial vehicle (UAV) systems in dynamic and uncertain environments and for complex tasks. The UAV swarm with stigmergy can perform complex intelligent behaviors without any centralized planning or direct communication. Starting with the connotation of UAV autonomy,this paper discusses the concept, characteristic, advantage and possible combat form of UAV autonomous swarm. Then the UAV autonomous swarm development tendency is analyzed from the following aspects:manned/unmanned aerial vehicle integration, morphing aircraft design, artificial intelligence and swarm conflict. The technology development necessity of UAV swarm against anti-UAV technology is also analyzed. Next, the possible application prospect of UAV is described from military fields and civilian fields. Finally,the development direction of UAV autonomous swarm is summarized in terms of strategic planning, research mode, system coordination, interdiscipline, defense applications and market cultivation.

参考文献

[1] 邱华鑫, 段海滨. 从鸟群群集飞行到无人机自主集群编队[J]. 工程科学学报, 2017, 39(3):317-322. Qiu Huaxin, Duan Haibin. From collective flight in bird flocks to unmanned aerial vehicle autonomous swarm formation[J]. Journal of University of Science and Technology, 2017, 39(3):317-322.
[2] Lundquist E H. Drone duties:The dull, the dirty, and the dangerous[J]. Naval Forces, 2003, 24(3):20.
[3] Yong E. Autonomous drones flock like birds[EB/OL]. (2016-04-05)[2018-07-05]. http://www.nature.com/news/autonomousdrones-flock-like-birds-1.14776.
[4] 段海滨. 从群体智能到多无人机自主控制[J]. 系统与控制纵横, 2014, 1(2):76-88. Duan Haibin. From swarm intelligence to multiple UAV autonomous control[J]. All About Systems and Control, 2014, 1(2):76-88.
[5] Qiu H X, Wei C, Dou R, et al. Fully autonomous flying:From collective motion in bird flocks to unmanned aerial vehicle autonomous swarms[J]. Science China Information Sciences, 2015, 58(12):1-3.
[6] Grassé P P. La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis et Cubitermes sp. la théorie de la stigmergie:Essai d'interprétation du comportement des termites constructeurs[J]. Insectes sociaux, 1959, 6(1):41-80.
[7] Floreano D, Wood R J. Science, technology and the future of small autonomous drones[J]. Nature, 2015, 521(7553):460-466.
[8] 李明. 无人机系统发展中的若干问题[J]. 现代军事, 2007(6):45-49. Li Ming. Issues of UAV system development[J]. Conmilit, 2007(6):45-49.
[9] 赵煦. 走向智能自主的无人机控制技术[J]. 科技导报, 2017, 35(7):1. Zhao Xu. Trend of intelligent and autonomous UAV control technology[J]. Science & Technology Review, 2017, 35(7):1.
[10] 沈林成, 牛轶峰, 朱华勇. 多无人机自主协同控制理论与方法[M]. 北京:国防工业出版社, 2013. Shen Lincheng, Niu Yifeng, Zhu Huayong. Theories and methods of autonomous cooperative control for multiple UAVs[M]. Beijing:National Defense Industry Press, 2013.
[11] 段海滨, 李沛. 基于生物群集行为的无人机集群控制[J]. 科技导报, 2017, 35(7):17-25. Duan Haibin, Li Pei. Autonomous control for unmanned aerial vehicle swarms based on biological collective behaviors[J]. Science & Technology Review, 2017, 35(7):17-25.
[12] Cambone S. Unmanned Aircraft Systems Roadmap 2005-2030[R]. Washington, DC:United States Department of Defense, 2005.
[13] 陈宗基, 魏金钟, 王英勋, 等.无人机自主控制等级及其系统结构研究[J].航空学报, 2011, 32(6):1075-1083. Chen Zongji, Wei Jinzhong, Wang Yingxun, et al. UAV autonomous control levels and system structure[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):1075-1083.
[14] Robert O. Small unmanned aircraft systems (SUAS) flight plan:2016-2036[R]. Washington, DC:United States Air Force, 2016.
[15] Fachey K M, Miller M J. Unmanned systems integrated roadmap 2017-2042[R]. Arlington County:Office of the Secretary of Defense, 2018.
[16] 王越超, 刘金国. 无人系统的自主性评价方法[J]. 科学通报, 2012, 57(15):1290-1299. Wang YueChao, Liu Jinguo. Evaluation methods for the autonomy of unmanned systems[J]. Chinese Science Bulletin, 2012, 57(15):1290-1299.
[17] 范彦铭. 无人机的自主与智能控制[J]. 中国科学(技术科学), 2017, 47(3):221-229. Fan Yanming. Autonomous and intelligent control of the unmanned aerial vehicle[J]. Scientia Sinica Technologica, 2017, 47(3):221-229.
[18] 石鹏飞. 无人机自主控制技术发展与挑战[J]. 科技导报, 2017, 35(7):32-38. Shi Pengfei. Autonomous control technology of unmanned aerial system and its challenge[J]. Science & Technology Review, 2017, 35(7):32-38.
[19] Hauert S, Leven S, Varga M, et al. Reynolds flocking in reality with fixed-wing robots:Communication range vs. maximum turning rate[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco:IEEE, 2011:5015-5020.
[20] DARPA Public Affairs. OFFSET envisions swarm capabilities for small urban ground units[EB/OL]. (2016-12-07)[2018-07-05]. http://www.darpa.mil/news-events/2016-12-07.
[21] Mathews N, Christensen A L, O'Grady R, et al. Mergeable nervous systems for robots[J]. Nature Communications, 2017, 8:439(1-7).
[22] Dempsey M E, Rasmussen S. Eyes of the army:US army roadmap for unmanned aircraft systems 2010-2035[R]. US Army UAS Center of Excellence, 2010.
[23] 国务院印发《新一代人工智能发展规划》[N]. 人民日报, 2017-07-21(1). State council notice on the issuance of the next generation artificial intelligence development plan[N]. People's Daily, 2017-07-21(1).
[24] 樊邦奎, 张瑞雨. 无人机系统与人工智能[J]. 武汉大学学报(信息科学版), 2017, 42(11):1523-1529. Fan Bangkui, Zhang Ruiyu. Unmanned aircraft system and artificial intelligence[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11):1523-1529.
[25] 周子为, 段海滨, 范彦铭. 仿雁群行为机制的多无人机紧密编队[J]. 中国科学(技术科学), 2017, 47(3):230-238. Zhou Ziwei, Duan Haibin, Fan Yanming. Unmanned aerial vehicle close formation control based on the behavior mechanism in wild geese[J]. Scientia Sinica Technologica, 2017, 47(3):230-238.
[26] Luo Q N, Duan H B. Distributed UAV flocking control based on homing pigeon hierarchical strategies[J]. Aerospace Science and Technology, 2017, 70:257-264.
[27] Huo M Z, Duan H B, Yang Q, et al. Live-fly experimentation for pigeon-inspired obstacle flight of rotor unmanned aerial vehicles[J]. Science China Information Sciences, in press.
[28] Duan H B, Yang Q, Zhang D F, et al. Unmanned aerial systems coordinate target allocation based on wolf behavior[J]. Science China Information Sciences, in press.
[29] 段海滨, 张岱峰, 范彦铭, 等. 从狼群智能到无人机集群协同决策[J]. 中国科学(信息科学), 待出版. Duan Haibin, Zhang Daifeng, Fan Yanming, et al. From wolf packs intelligence to UAV cooperative decision[J]. Scientia Sinica Informationis. 2019, in press.
[30] 霍梦真, 段海滨, 范彦铭, 等. 仿鹰群智能的无人机集群协同对抗飞行验证[J]. 控制理论与应用, 待出版. Huo Mengzhen, Duan Haibin, Fan Yanming, et al. Flight verification of multiple UAVs collaborative air combat based on the intelligent behavior in hawks[J]. Control Theory and Applications, in press.
[31] 罗德林, 徐扬, 张金鹏. 无人机集群对抗技术新进展[J]. 科技导报, 2017, 35(7):26-31. Luo Delin, Xu Yang, Zhang Jinpeng. New progresses on UAV swarm confrontation[J]. Science & Technology Review, 2017, 35(7):26-31.
[32] 丁文锐, 黄文乾. 无人机数据链抗干扰技术发展综述[J]. 电子技术应用, 2016, 42(10):6-10. Ding Wenyue, Huang Wenqian. The survey of the development of anti-jamming technology for UAV data link[J]. Application of Electronic Technique, 2016, 42(10):6-10.
[33] 薛春祥, 黄孝鹏, 朱咸军, 等. 外军无人系统现状与发展趋势[J]. 雷达与对抗, 2016(1):1-5. Xue Chunxiang, Huang Xiaopeng, Zhun Xianjun, et al, Status quo and development trends of foreign military's unmanned systems[J]. Radar & ECM, 2016(1):1-5.
[34] 陶于金, 李沛峰. 无人机系统发展与关键技术综述[J]. 航空制造技术, 2014, 464(20):34-39. Tao Yujin, Li Peifeng. Development and key technology of UAV[J]. Aeronautical Manufacturing Technology, 2014, 464(20):34-39.
[35] 柴天佑. 制造流程智能化对人工智能的挑战[J]. 中国科学基金, 2018(3):251-256. Cai Tianyou. Artificial intelligence research challenges in intelligent manufacturing processes[J]. Bulletin of National Natural Science Foundation of China, 2018(3):251-256.
[36] 王之康. 谭铁牛:人工智能的春天刚刚开始[N]. 中国科学报, 2018-05-31(3). Wang Zikang. Tan Siniu:The spring of artificial intelligence is only beginning[N]. China Science Daily, 2018-05-31(3).
文章导航

/