[1] 刘克松, 江雷. 仿生结构及其功能材料研究进展[J]. 科学通报, 2009, 54(18):2667-2681. Liu Kesong, Jiang Lei. Research progres on biomimetic structural and functional materials[J]. Chinese Science Bulletin, 2009, 54(18):2667-2681.
[2] 江雷, 冯琳. 仿生智能纳米界面材料[M]. 北京:化学工业出版社, 2016. Jiang Lei, Feng Lin. Bioinspired intelligent nanostructured interfacial materials[M]. Beijing:Chemical Industry Press, 2016.
[3] Shoseyov O, Levy I. Nanobiotechnology:Bioinspired devices and materials of the future[M]. New Jersey:Humana Press, 2008.
[4] 王鹏伟, 刘明杰, 江雷. 仿生多尺度超浸润界面材料[J]. 物理学报, 2016, 65(18):186801. Wang Pengwei, Liu Mingjie, Jiang Lei. Bioinspired multiscale interfacial materials with superwettability[J]. Acta Physica Sinica, 2016, 65(18):186801.
[5] Mishchenko L, Hatton B, Bahadur V, et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets[J]. ACS Nano, 2010, 4(12):7699-7707.
[6] Wang Y, Xue J, Wang Q, et al. Verification of icephobic/antiicing properties of a superhydrophobic surface[J]. ACS Applied Materials & Interfaces, 2013, 5(8):3370-3381.
[7] Lv J, Song Y, Jiang L, et al. Bio-inspired strategies for anti-icing[J]. ACS Nano, 2014, 8(4):3152-3169.
[8] Kreder M J, Alvarenga J, Kim P, et al. Design of anti-icing surfaces:smooth, textured or slippery[J/OL]. Nature Reviews Materials, 2016, 1(1):15003. https://www.nature.com/articles/natrevmats20153.
[9] Peng C, Chen Z, Tiwari M K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J]. Nature Materials, 2018, 17(4):355-360.
[10] Narhe R, Beysens D. Nucleation and growth on a superhydrophobic grooved surface[J]. Physical Review Letters, 2004, 93(7):076103.
[11] Lafuma A, Quéré D. Superhydrophobic states[J]. Nature Materials, 2003, 2(7):457-460.
[12] Jung S, Tiwari M K, Doan N V, et al. Mechanism of supercooled droplet freezing on surfaces[J/OL]. Nature Communications, 2012, 3:615. https://www.nature.com/articles/ncomms1630.
[13] Nosonovsky M, Hejazi V. Why superhydrophobic surfaces are not always icephobic[J]. ACS Nano, 2012, 6(10):8488-8491.
[14] Dou R, Chen J, Zhang Y, et al. Anti-icing coating with an aqueous lubricating layer[J]. ACS Applied Materials & Interfaces, 2014, 6(10):6998-7003.
[15] Chen J, Luo Z, Fan Q, et al. Anti-ice coating inspired by ice skating[J]. Small, 2014, 10(22):4693-4699.
[16] Chen J, Dou R, Cui D, et al. Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate[J]. ACS Applied Materials & Interfaces, 2013, 5(10):4026-4030.
[17] He Z, Xie W J, Liu Z, et al. Tuning ice nucleation with counterions on polyelectrolyte brush surfaces[J/OL]. Science Advances, 2016, 2(6):e1600345. http://advances.sciencemag.org/content/advances/2/6/e1600345.full.pdf.
[18] Wilson P W, Lu W, Xu H, et al. Inhibition of ice nucleation by slippery liquid-infused porous surfaces(SLIPS)[J]. Physical Chemistry Chemical Physics, 2013, 15(2):581-585.
[19] Zhu L, Xue J, Wang Y, et al. Ice-phobic coatings based on silicon-oil-infused polydimethylsiloxane[J]. ACS Applied Materials & Interfaces, 2013, 5(10):4053-4062.
[20] Kim P, Wong T S, Alvarenga J, et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance[J]. ACS Nano, 2012, 6(8):6569-6577.
[21] Wong T S, Kang S H, Tang S K, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365):443-447.
[22] Vogel N, Belisle R A, Hatton B, et al. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers[J/OL]. Nature Communications, 2013, 4:2176. https://www.nature.com/articles/ncomms3176.
[23] Ding X, Yang C, Lim T P, et al. Antibacterial and antifouling catheter coatings using surface grafted peg-b-cationic polycarbonate diblock copolymers[J]. Biomaterials, 2012, 33(28):6593-6603.
[24] Statz A R, Meagher R J, Barron A E, et al. New peptidomimetic polymers for antifouling surfaces[J]. Journal of the American Chemical Society, 2005, 127(22):7972-7973.
[25] Rana D, Matsuura T. Surface modifications for antifouling membranes[J]. Chemical Reviews, 2010, 110(4):2448-2471.
[26] Dalsin J L, Messersmith P B. Bioinspired antifouling polymers[J]. Materials Today, 2005, 8(9):38-46.
[27] Mi L, Jiang S. Integrated antimicrobial and nonfouling zwitterionic polymers[J]. Angewandte Chemie International Edition, 2014, 53(7):1746-1754.
[28] Jiang S, Cao Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications[J]. Advanced Materials, 2010, 22(9):920-932.
[29] Chen S, Li L, Zhao C, et al. Surface hydration:Principles and applications toward low-fouling/nonfouling biomaterials[J]. Polymer, 2010, 51(23):5283-5293.
[30] Shi C, Yan B, Xie L, et al. Long-range hydrophilic attraction between water and polyelectrolyte surfaces in oil[J]. Angewandte Chemie International Edition, 2016, 55(48):15017-15021.
[31] He K, Duan H, Chen G Y, et al. Cleaning of oil fouling with water enabled by zwitterionic polyelectrolyte coatings:Overcoming the imperative challenge of oil-water separation membranes[J]. ACS Nano, 2015, 9(9):9188-9198.
[32] Kirschner C M, Brennan A B. Bio-inspired antifouling strategies[J]. Annual Review of Materials Research, 2012, 42:211-229.
[33] Scardino A J, De Nys R. Mini review:Biomimetic models and bioinspired surfaces for fouling control[J]. Biofouling, 2011, 27(1):73-86.
[34] Callow J A, Callow M E. Trends in the development of environmentally friendly fouling-resistant marine coatings[J/OL]. Nature Communications, 2011, 2:244. https://www.nature.com/articles/ncomms1251
[35] Epstein A K, Wong T-S, Belisle R A, et al. Liquid-infused structured surfaces with exceptional anti-biofouling performance[J]. Proceedings of the National Academy of Sciences, 2012, 109(33):13182-13187.
[36] Xiao L, Li J, Mieszkin S, et al. Slippery liquid-infused porous surfaces showing marine antibiofouling properties[J]. ACS Applied Materials & Interfaces, 2013, 5(20):10074-10080.
[37] Wang P, Zhang D, Lu Z, et al. Fabrication of slippery lubricant-infused porous surface for inhibition of microbially influenced corrosion[J]. ACS Applied Materials & Interfaces, 2016, 8(2):1120-1127.
[38] Amini S, Kolle S, Petrone L, et al. Preventing mussel adhesion using lubricant-infused materials[J]. Science, 2017, 357(6352):668-673.
[39] Chen S, Ma C, Zhang G. Biodegradable polymer as controlled release system of organic antifoulant to prevent marine biofouling[J]. Progress in Organic Coatings, 2017, 104:58-63.
[40] Xie Q, Zhou X, Ma C, et al. Self-cross-linking degradable polymers for antifouling coatings[J]. Industrial & Engineering Chemistry Research, 2017, 56(18):5318-5324.
[41] Xie Q, Ma C, Zhang G, et al. Poly (ester)-poly (silyl methacrylate) copolymers:Synthesis and hydrolytic degradation kinetics[J]. Polymer Chemistry, 2018, 9(12):1448-1454.
[42] Chen S, Ma C, Zhang G. Biodegradable polymers for marine antibiofouling:Poly (ε-caprolactone)/poly (butylene succinate) blend as controlled release system of organic antifoulant[J]. Polymer, 2016, 90:215-221.
[43] Zhou X, Xie Q, Ma C, et al. Inhibition of marine biofouling by use of degradable and hydrolyzable silyl acrylate copolymer[J]. Industrial & Engineering Chemistry Research, 2015, 54(39):9559-9565.
[44] Xie Q, Xie Q, Pan J, et al. Biodegradable polymer with hydrolysis-induced zwitterions for antibiofouling[J]. ACS Applied Materials & Interfaces, 2018, 10(13):11213-11220.
[45] Cui J, Daniel D, Grinthal A, et al. Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing[J]. Nature Materials, 2015, 14(8):790.
[46] Ying H, Zhang Y, Cheng J. Dynamic urea bond for the design of reversible and self-healing polymers[J/OL]. Nature Communications, 2014, 5:3218. https://www.nature.com/articles/ncomms4218
[47] Canadell J, Goossens H, Klumperman B. Self-healing materials based on disulfide links[J]. Macromolecules, 2011, 44(8):2536-2541.
[48] Oehlenschlaeger K K, Mueller J O, Brandt J, et al. Adaptable hetero diels-alder networks for fast self-healing under mild conditions[J]. Advanced Materials, 2014, 26(21):3561-3566.
[49] Roy N, Bruchmann B, Lehn J M. Dynamers:Dynamic polymers as self-healing materials[J]. Chemical Society Reviews, 2015, 44(11):3786-3807.
[50] Wei Z, Yang J H, Zhou J, et al. Self-healing gels based on constitutional dynamic chemistry and their potential applications[J]. Chemical Society Reviews, 2014, 43(23):8114-8131.
[51] Yan B, Huang J, Han L, et al. Duplicating dynamic strainstiffening behavior and nanomechanics of biological tissues in a synthetic self-healing flexible network hydrogel[J]. ACS Nano, 2017, 11(11):11074-11081.
[52] Yan X, Liu Z, Zhang Q, et al. Quadruple H-bonding crosslinked supramolecular polymeric materials as substrates for stretchable, antitearing, and self-healable thin film electrodes[J]. Journal of the American Chemical Society, 2018, 140(15):5280-5289.
[53] Burattini S, Greenland B W, Merino D H, et al. A healable supramolecular polymer blend based on aromatic π-π stacking and hydrogen-bonding interactions[J]. Journal of the American Chemical Society, 2010, 132(34):12051-12058.
[54] Li L, Yan B, Yang J, et al. Novel mussel-inspired injectable self-healing hydrogel with anti-biofouling property[J]. Advanced Materials, 2015, 27(7):1294-1299.
[55] Cordier P, Tournilhac F, Soulié-Ziakovic C, et al. Self-healing and thermoreversible rubber from supramolecular assembly[J]. Nature, 2008, 451(7181):977-980.
[56] Lin Y, Li G. An intermolecular quadruple hydrogen-bonding strategy to fabricate self-healing and highly deformable polyurethane hydrogels[J]. Journal of Materials Chemistry B, 2014, 2(39):6878-6885.
[57] Holten-Andersen N, Harrington M J, Birkedal H, et al. Ph-induced metal-ligand cross-links inspired by mussel yield selfhealing polymer networks with near-covalent elastic moduli[J]. Proceedings of the National Academy of Sciences, 2011, 108(7):2651-2655.
[58] Fages F. Metal coordination to assist molecular gelation[J]. Angewandte Chemie International Edition, 2006, 45(11):1680-1682.
[59] Mozhdehi D, Ayala S, Cromwell O R, et al. Self-healing multiphase polymers via dynamic metal-ligand interactions[J]. Journal of the American Chemical Society, 2014, 136(46):16128-16131.
[60] Li C H, Wang C, Keplinger C, et al. A highly stretchable autonomous self-healing elastomer[J]. Nature Chemistry, 2016, 8(6):618-624.
[61] Phan L, Walkup W G, Ordinario D D, et al. Reconfigurable infrared camouflage coatings from a cephalopod protein[J]. Advanced Materials, 2013, 25(39):5621-5625.
[62] Phan L, Ordinario D D, Karshalev E, et al. Infrared invisibility stickers inspired by cephalopods[J]. Journal of Materials Chemistry C, 2015, 3(25):6493-6498.
[63] Phan L, Kautz R, Leung E M, et al. Dynamic materials inspired by cephalopods[J]. Chemistry of Materials, 2016, 28(19):6804-6816.
[64] Xu C, Stiubianu G T, Gorodetsky A A. Adaptive infrared-reflecting systems inspired by cephalopods[J]. Science, 2018, 359(6383):1495-1500.
[65] Zhao N, Wang Z, Cai C, et al. Bioinspired materials:From low to high dimensional structure[J]. Advanced Materials, 2014, 26(41):6994-7017.
[66] Tao P, Shang W, Song C, et al. Bioinspired engineering of thermal materials[J]. Advanced Materials, 2015, 27(3):428-463.
[67] Cui Y, Gong H, Wang Y, et al. A thermally insulating textile inspired by polar bear hair[J/OL]. Advanced Materials, 2018, 30(14):1706807. https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201706807.
[68] Li S C, Chu L N, Gong X Q, et al. Hydrogen bonding controls the dynamics of catechol adsorbed on a tio2(110) surface[J]. Science, 2010, 328(5980):882-884.
[69] Zeng H, Hwang D S, Israelachvili J N, et al. Strong reversible Fe-3+ mediated bridging between dopa-containing protein films in water[J]. Proceedings of the National Academy of Sciences, 2010, 107(29):12850-12853.
[70] Narkar A R, Barker B, Clisch M, et al. Ph responsive and oxidation resistant wet adhesive based on reversible catechol-boronate complexation[J]. Chemistry of Materials, 2016, 28(15):5432-5439.
[71] Salonen L M, Ellermann M, Diederich F. Aromatic rings in chemical and biological recognition:Energetics and structures[J]. Angewandte Chemie International Edition, 2011, 50(21):4808-4842.
[72] Gebbie M A, Wei W, Schrader A M, et al. Tuning underwater adhesion with cation-π interactions[J]. Nature Chemistry, 2017, 9(5):473-479.
[73] Hofman A H, Van Hees I A, Yang J, et al. Bioinspired underwater adhesives by using the supramolecular toolbox[J/OL]. Advanced Materials, 2018, 30(19):1804640. https://onlinelibrarywiley.com/doi/pdf/10.1002/adma.201704640.
[74] Li L, Zeng H. Marine mussel adhesion and bio-inspired wet adhesives[J]. Biotribology, 2016, 5:44-51.
[75] Ahn B K. Perspectives on mussel-inspired wet adhesion[J]. Journal of the American Chemical Society, 2017, 139(30):10166-10171.
[76] Maier G P, Rapp M V, Waite J H, et al. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement[J]. Science, 2015, 349(6248):628-632.
[77] Wilker J J. Positive charges and underwater adhesion[J]. Science, 2015, 349(6248):582-583.
[78] Rapp M V, Maier G P, Dobbs H A, et al. Defining the catechol-cation synergy for enhanced wet adhesion to mineral surfaces[J]. Journal of the American Chemical Society, 2016, 138(29):9013-9016.
[79] North M A, Del Grosso C A, Wilker J J. High strength underwater bonding with polymer mimics of mussel adhesive proteins[J]. ACS Applied Materials & Interfaces, 2017, 9(8):7866-7872.
[80] Lim C, Huang J, Kim S, et al. Nanomechanics of poly (catecholamine) coatings in aqueous solutions[J]. Angewandte Chemie International Edition, 2016, 55(10):3342-3346.
[81] Shao H, Stewart R J. Biomimetic underwater adhesives with environmentally triggered setting mechanisms[J]. Advanced Materials, 2010, 22(6):729-733.
[82] Zhao Q, Lee D W, Ahn B K, et al. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange[J]. Nature Materials, 2016, 15(4):407-412.
[83] Zhao Y, Wu Y, Wang L, et al. Bio-inspired reversible underwater adhesive[J/OL]. Nature Communications, 2017, 8:2218. https://www.nature.com/articles/s41467-017-02387-2.
[84] Dai X, Sun N, Nielsen S O, et al. Hydrophilic directional slippery rough surfaces for water harvesting[J/OL]. Science Advances, 2018, 4(3):eaaq0919. http://advances.sciencemag.org/content/advances/4/3/eaaq0919.full.pdf.
[85] Qi X, Zhang D, Ma Z, et al. An epidermis-like hierarchical smart coating with a hardness of tooth enamel[J]. ACS Nano, 2018, 12(2):1062-1073.
[86] Qin M, Sun M, Bai R, et al. Bioinspired hydrogel interferometer for adaptive coloration and chemical sensing[J/OL]. Advanced Materials, 2018, 30(21):1800468. https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201800468.
[87] Lv J A, Liu Y, Wei J, et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators[J]. Nature, 2016, 537(7619):179-184.