专题:2018年科技回眸

2018年化学热点回眸

  • 郑企雨
展开
  • 中国科学院化学研究所, 北京 100190
郑企雨,研究员,研究方向为有机化学、超分子化学,电子信箱:zhengqy@iccas.ac.cn

收稿日期: 2019-01-07

  修回日期: 2019-01-11

  网络出版日期: 2019-01-29

Selected hot topics of chemistry in 2018

  • ZHENG Qiyu
Expand
  • Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2019-01-07

  Revised date: 2019-01-11

  Online published: 2019-01-29

摘要

2018年,化学学科在合成与催化、理论与机制、分析与测量等核心领域取得诸多突破性进展;更重要的是,化学作为一门传统学科,在与生命、医学、材料、环境、能源等领域的交叉中焕发出新活力,极大地拓展了自身的发展空间。本文选择一些代表性示例,介绍了2018年化学在新分子创造、结构表征、催化合成、手性科学等方向的亮点工作,评述了对化学生物学、机器学习在化学中的应用、材料与能源化学等交叉领域的典型成果。

本文引用格式

郑企雨 . 2018年化学热点回眸[J]. 科技导报, 2019 , 37(1) : 16 -24 . DOI: 10.3981/j.issn.1000-7857.2019.01.002

Abstract

In 2018, significant progresses have been made in traditional and interdisciplinary research fields of chemistry. In this article we review some selected hot spots, including design of new molecules, chemical imaging, catalysis and synthesis, chiral molecular science, machine learning in chemistry, chemical biology, and materials chemistry. We also introduce the outstanding advances made by Chinese chemists in 2018.

参考文献

[1] Ishigaki Y, Shimajiri T, Takeda T, et al. Longest C-C single bond among neutral hydrocarbons with a bond length beyond 1.8Å[J]. Chem, 2018, 4:795-806.
[2] Moreno C, Vilasvarela M, Kretz B, et al. Bottom up synthesis of multifunctional nanoporous graphene[J]. Science, 2018, 360(6385):199-203.
[3] Jones C G, Martynowycz M W, Hattne J, et al. The cryoEM method MicroED as a powerful tool for small molecule structure determination[J]. ACS Central Science, 2018, 4(11):1587-1592.
[4] Gruene T, Wennmacher J T C, Zaubitzer C, et al. Rapid structure determination of microcrystalline molecular compounds using electron diffraction[J]. Angewandte Chemie International Edition, 2018, 57:16313-16317.
[5] Jiang Y, Chen Z, Han Y, et al. Electron ptychography of 2D materials to deep sub-ångström resolution[J]. Nature, 2018, 559(7714):343-349.
[6] Légaré M A, Bélanger-Chabot G, Dewhurst R D, et al. Nitrogen fixation and reduction at boron[J]. Science, 2018, 359(6378):896-900.
[7] Karp E M, Eaton T R, Sànchez V I N, et al. Renewable acrylonitrile production.[J]. Science, 2017, 358(6368):1307-1310.
[8] Canfield P J, Blake I M, Cai Z L, et al. A new fundamental type of conformational isomerism[J]. Nature Chemistry, 2018, 10(6):615-624.
[9] Wendlandt A E, Vangal P, Jacobsen E N. Quaternary stereocentres via an enantioconvergent catalytic SN1 reaction[J]. Nature, 2018, 556(7702):447-451.
[10] Banerjee-Ghosh K, Ben Dor O, Tassinari F, et al. Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates[J]. Science, 2018:eaar4265.
[11] Lee H E, Ahn H Y, Mun J, et al. Amino-acid-and peptidedirected synthesis of chiral plasmonic gold nanoparticles[J]. Nature, 2018, 556(7701):360-365.
[12] Ahneman D T, Estrada J G, Lin S, et al. Predicting reaction performance in C-N cross-coupling using machine learning[J]. Science, 2018, doi:10.1126/science.aar5169.
[13] Granda J M, Donina L, Dragone V, et al. Controlling an organic synthesis robot with machine learning to search for new reactivity[J]. Nature, 2018, 559(7714):377-381.
[14] Chen K, Huang X, Kan S B J, et al. Enzymatic construction of highly strained carbocycles[J]. Science, 2018, 360(6384):71-75.
[15] Zhang R K, Chen K, Huang X, et al. Enzymatic assembly of carbon-carbon bonds via iron-catalysed sp3 C-H functionalization[J]. Nature, 2019, 565:67-72.
[16] Mirts E N, Petrik I D, Parisa H, et al. A designed heme-[4Fe-4S] metalloenzyme catalyzes sulfite reduction like the native enzyme[J]. Science, 2018, 361(6407):1098-1101.
[17] Taylor M T, Nelson J E, Suero M G, et al. A protein functionalization platform based on selective reactions at methionine residues[J]. Nature, 2018, 562:563-568.
[18] Nakamura A, Kaneko N, Villemagne V L, et al. High performance plasma amyloid-β biomarkers for Alzheimer's disease[J]. Nature, 2018, 554(7691):249-254.
[19] Ma T, Kapustin E A, Yin S X, et al. Single-crystal X-ray diffraction structures of covalent organic frameworks[J]. Science, 2018, 361(6397):48-52.
[20] Zhu J B, Watson E M, Tang J, et al. A synthetic polymer system with repeatable chemical recyclability[J]. Science, 2018, 360(6387):398-403.
[21] Peng J, Cao D, He Z, et al. The effect of hydration number on the interfacial transport of sodium ions[J]. Nature, 2018, 557(7707):701-705.
[22] Wu X, Zhao L, Jin J, et al. Observation of alkaline earth complexes M(CO)8(M=Ca, Sr, or Ba) that mimic transition metals[J]. Science, 2018, 361(6405):912-916.
[23] Yuan D, Guan Y, Chen W, et al. Observation of the geometric phase effect in the H+HD→H2+D reaction[J]. Science, 2018, 362(6420):1289-1293.
[24] Chen J, Gong X, Li J, et al. Carbonyl catalysis enables a biomimetic asymmetric Mannich reaction[J]. Science, 2018, 360(6396):1438-1442.
[25] Zhang J, Yu P, Li S Y, et al. Asymmetric phosphoric acid-catalyzed four-component Ugi reaction[J]. Science, 2018, 361(6407):eaas8707.
[26] Hu A, Guo J J, Pan H, et al. Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis[J]. Science, 2018, 361(6403):668-672.
[27] Zhang L, Chen J, Fan L, et al. Giant polarization in super-tetragonal thin films through interphase strain[J]. Science, 2018, 361(6401):494-497.
[28] Liu X, Zhang F, Jing X, et al. Complex silica composite nanomaterials templated with DNA origami[J]. Nature, 2018, 559(7715):593-598.
[29] Ye H Y, Tang Y Y, Li P F, et al. Metal-free three-dimensional perovskite ferroelectrics[J]. Science, 2018, 361(6398):151-155.
[30] Yao L, Garmash O, Bianchi F, et al. Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity[J]. Science, 2018, 361(6399):278-281.
[31] Shen K, Zhang L, Chen X, et al. Ordered macro-microporous metal-organic framework single crystals[J]. Science, 2018, 359(6372):206-210.
[32] Li L, Lin R B, Krishna R, et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites[J]. Science, 2018, 362(6413):443-446.
文章导航

/