专题:2018年科技回眸

2018年肿瘤免疫研究热点回眸

  • 黄波
展开
  • 中国医学科学院基础医学研究所, 北京 100730
黄波,教授,研究方向为肿瘤免疫,电子信箱:tjhuangbo@hotmail.com

收稿日期: 2018-12-29

  修回日期: 2019-01-10

  网络出版日期: 2019-01-29

基金资助

国家自然科学基金基础科学中心项目(81788101);中国医学科学院医学与健康创新工程项目(2016-I2M-1-007)

Hotspots of cancer immunology in 2018

  • HUANG Bo
Expand
  • Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100730, China

Received date: 2018-12-29

  Revised date: 2019-01-10

  Online published: 2019-01-29

摘要

肿瘤免疫疗法已成为肿瘤治疗的重要手段,是肿瘤研究领域的焦点和热点。肿瘤免疫治疗相关药物相继问世,而2018年度诺贝尔生理学或医学奖授予两位在肿瘤免疫治疗中有突出贡献的免疫学家,更是确立了肿瘤免疫治疗时代的到来。本文概述了2018年肿瘤免疫治疗研究的热点及进展,包括新的肿瘤免疫检查点的发现、T细胞耗竭的深入探究、新的肿瘤免疫抑制细胞亚群的发现以及肿瘤免疫治疗新策略的探索。

本文引用格式

黄波 . 2018年肿瘤免疫研究热点回眸[J]. 科技导报, 2019 , 37(1) : 87 -90 . DOI: 10.3981/j.issn.1000-7857.2019.01.008

Abstract

Tumor immunotherapy has become a first line option for cancer treatment, a hot field in cancer research and a weapon to overcome cancer in the future. A series of tumor immunotherapeutic drugs have been approved and used in clinic. Also the Nobel Prize in Physiology or Medicine in 2018 was awarded to two immunologists who had made outstanding contributions to tumor immunotherapy, revealing the coming of immunotherapy age. This article outlines the hotspots and advances of tumor immunology and immunotherapy in 2018, including the discovery of new immune checkpoints, in-depth understanding of T cell exhaustion, discovery of new tumor immunosuppressive cell subsets, and exploration of new strategies for tumor immunotherapy. These studies will further promote the development of tumor immunotherapy and bring more effective treatments to cancer patients.

参考文献

[1] Dougan M, Dranoff G. Immune therapy for cancer[J]. Annual Review of Immunology. 2009, 27:83-117.
[2] Burnet M. Cancer-A biological approach[J]. British Medical Journal, 1957, 1(5023):841-847.
[3] Steinman R M. Decisions about dendritic cells:Past, present, and future[J]. Annual Review of Immunology, 2012, 30(1):1-22.
[4] Wang J, Sanmamed M F, Datar I, et al. Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3[J]. Cell, 2018, doi:10.1016/j.cell.2018.11.010.
[5] Zhang Q, Bi J C, Zheng X D, et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity[J]. Nature Immunology, 2018, 19(7):723-732.
[6] Chihara N, Madi A, Kondo T, et al. Induction and transcriptional regulation of the co-inhibitory gene module in T cells[J]. Nature, 2018, 558(7710):454-459.
[7] Simoni Y, Becht E, Fehlings M, et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates[J]. Nature, 2018, 557(7706):575-579.
[8] Scheper W, Kelderman S, Fanchi L F, et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers[J]. Nature Medicine, 2018, doi:10.1038/s41591-018-0266-5.
[9] Han Y M, Liu Q Y, Hou J, et al. Tumor-induced generation of splenic erythroblast-like Ter-cells promotes tumor progression[J]. Cell, 2018, 173(3):634-648.
[10] Zhao L T, He R, Long H X, et al. Late-stage tumors induce anemia and immunosuppressive extramedullary erythroid progenitor cells[J]. Nature Medicine, 2018, 24(10):1536-1544.
[11] Liu Y Y, Liang X Y, Yin X N, et al. Blockade of IDO-kynurenine-AhR metabolic circuitry abrogates IFN-γ-induced immunologic dormancy of tumor-repopulating cells[J]. Nature Communications, 2017, 8:15207.
[12] Liu Y Y, Lv J D, Liu J Y, et al. STAT3/p53 pathway activation disrupts IFN-β-induced dormancy in tumor-repopulating cells[J]. The Journal of Clinical Investigation, 2018, 128(3):1057-1073.
[13] Liu Y Y, Lv J D, Liang X Y, et al. 3D fibrin stiffness mediates dormancy of tumor-repopulating cells via a Cdc42-driven Tet2 epigenetic program[J]. Cancer Research, 2018, 78(14):3926-3937.
[14] Liu Y Y, Liang X Y, Dong W Q, et al. Tumor repopulating cells induce PD-1 expression in CD8+ T cells by transferring kynurenine and AhR activation[J]. Cancer Cell, 2018, 33(3):480-494.
文章导航

/