先进纤维复合材料的产品创新研发和技术日益成熟,对国民经济的发展及国防现代化建设具有重大的意义。回顾了2018年先进纤维复合材料在成型工艺、性能优化、产品创新、成本缩减、技术转化等方面的进展,评述了先进纤维复合材料在航空航天、轨道交通、汽车、船舶和能源领域的应用。
The advanced fiber reinforced composites in 2018 in terms of molding process, performance optimization, product innovation, cost reduction, technology conversion, etc. are reviewed, and the applications of advanced fiber reinforced composites in aerospace, rail transit, automotive, marine and energy fields are addressed. Some problems to be solved and the future development are proposed for innovation and R&D of advanced fiber composites and maturity of technology.
[1] 孙振起, 吴安如. 先进复合材料在飞机结构中的应用[J]. 材料导报, 2015, 29(11):61-64. Sun Zhenqi, Wu Anru. Application of advanced composite materials in aircraft structures[J]. Materials Review, 2015, 29(11):61-64.
[2] 高禹, 李晨浩, 高博闻, 等. 先进聚合物基复合材料疲劳性能测试与分析方法的研究现状[J]. 沈阳航空航天大学学报, 2018, 35(1):1-8. Gao Yu, Li Haochen, Gao Bowen, et al. Research status in fatigue performance test and analysis for advanced polymer matrix composites[J]. Journal of Shenyang Aerospace University, 2018, 35(1):1-8.
[3] 阎龙, 史耀耀, 段继豪. 先进树脂基复合材料制造技术综述[J]. 航空制造技术, 2011, 375(3):55-58. Yan Long, Shi Yaoyao, Duan Jihao. Review of manufacturing technology for advanced resin-matrix composites[J]. Aeronautical Manufacturing Technology, 2011, 375(3):55-58.
[4] 杜善义. 先进复合材料与航空航天[J].复合材料学报, 2007, 24(1):1-12. Du Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Metallurgica Sinica, 2007, 24(1):1-12.
[5] VSS Unity takes to the skies for her first spaceflight[EB/OL].[2018-12-20]. https://www.image.net/previewAsset/631613731/false/virgingalactic/575082540.
[6] Armstrong Flight Research Center. Experimental wing verified during loads testing[EB/OL].[2018-12-25]. https://www.nasa.gov/centers/armstrong/features/PAT_Experimental_Wing_Verified_During_Loads_Testing.html.
[7] National Laboratory. Self-sensing materials are here[EB/OL].[2018-12-25]. https://www.ornl.gov/news/self-sensing-materials-are-here.
[8] Bowland C C, Nguyen N A, Naskar A K. Roll-to-roll processing of silicon carbide nanoparticle-deposited carbon fiber for multifunctional composites[J]. Applied Materials & Interfaces, 2018, 10(31):26576-26585.
[9] Gantenbein S, Masania K, Woigk W, et al. Three-dimensional printing of hierarchical liquid-crystal-polymer structures[J]. Nature, 2018, 561(7722):226.
[10] Levchenko I, Bazaka K, Belmonte T, et al. Advanced materials for next-generation Spacecraft[J]. Advanced Materials, 2018:1802201.
[11] 丁叁叁, 田爱琴, 王建军, 等. 高速列车组碳纤维复合材料应用研究[J].电力机车与城轨车辆, 2015, 36(增刊1):1-8. Ding Sansan, Tian Aiqin, Wang Jianjun, et al. Study on application of carbon fiber composite material for high speed train[J]. Electric Locomotives & Mass Transit Vehicles, 2015, 36(Suppl 1):1-8.
[12] Gong M, Sun S, Li Q. Carbon fiber reinforced composite materials for self-supporting subway train cab[C]//IOP Conference Series:Materials Science and Engineering. Bristol:IOP Publishing, 2018, 436(1):012007.
[13] 中车四方股份公司新闻中心. 我国新一代碳纤维地铁车辆问世[EB/OL].[2018-12-25]. http://www.crrcgc.cc/sfgf/g7217/s4940/t296042.aspx. CRRC. A new generation of carbon fiber metro vehicles in China[EB/OL].[2018-12-25]. http://www.crrcgc.cc/sfgf/g7217/s4940/t296042.aspx.
[14] 付京京. 汽车轻量化技术的发展现状及其实施途径分析[J]. 信息系统工程, 2016(7):79. Fu Jingjing. Development status of automotive lightweight technology and analysis of implementation ways[J]. China CIO News, 2016(7):79.
[15] Jang J, Park H C, Lee H S, et al. Electrically and thermally conductive carbon fibre fabric reinforced polymer composites based on nanocarbons and an in-situ polymerizable cyclic oligoester[J]. Scientific Reports, 2018, 8(1):7659.
[16] Composite blades innovation at Loiretech[EB/OL].[2018-12-25]. https://www.loiretech.fr/sites/default/files/webmaster/Innovation/fabheli_hd.jpg.
[17] Bozkurt Ö Y, Erkli ğ A, Bozkurt Y T. Influence of basalt fiber hybridization on the vibration-damping properties of glass fiber reinforced epoxy laminates[J]. Materials Research Express, 2018, 6(1):015301.
[18] 李倩. 浅谈风电叶片碳纤维复合材料应用[J]. 黑龙江科技信息, 2015(9):91. Li Qian. Application of carbon fiber composite materials for wind power blades[J]. Heilongjiang Science and Technology Information, 2015(9):91.
[19] GE connects financing and turbine technology to its flagship onshore wind project in Sub-Sahara[EB/OL].[2018-12-25]. Africahttps://www.ge.com/renewableenergy/newsroom/press-releases.
[20] Chen S, He S, Hou H. Electrospinning technology for applications in supercapacitors[J]. Current Organic Chemistry, 2013, 17(13):1402-1410.
[21] 孙立, 杨颖, 江艳. 晶态纳米碳基材料的制备与电容储能应用[M]. 北京:国防工业出版社, 2015. Sun Li, Yang Ying, Jiang Yan. Preparation of crystalline carbon-based nanomaterials and application of capacitance energy storage[M]. Beijing:National Defense Industry Press, 2015.
[22] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9):2520-2531.
[23] Zheng J P, Huang J, Jow T R. The limitations of energy density for electrochemical capacitors[J]. Journal of the Electrochemical Society, 1997, 144(6):2026-2031.
[24] Muralidharan N, Teblum E, Westover A S, et al. Carbon nanotube reinforced structural composite supercapacitor[J]. Scientific Reports, 2018, 8(1):17662.