2018年是钙钛矿太阳能电池发展的第10年,国际上该领域取得了一系列重要进展。从器件效率的持续刷新,钙钛矿材料和器件稳定性问题的解决,器件到模块化制备以及柔性和半透明电池的应用等方面简要介绍了代表性研究进展。
2018 was the tenth year for the development of perovskite solar cells. A series of achievements in efficiency, device stability, module preparation, and flexible semi-transparent devices are summarized in this article. Several representative achievements in perovskite solar cells are introduced as well.
[1] Chen H, Ye F, Tang W T, et al. A solvent-and vacuum-free route to large-area perovskite films for efficient solar modules[J]. Nature, 2017, 550(7674):92-95.
[2] Luo D Y, Yang W Q, Wang Z P, et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells[J]. Science, 2018, 360(6396):1442-1446.
[3] Stolterfoht M, Wolff C M, Marquez J A, et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells[J]. Nature Energy, 2018, 3(10):847-854.
[4] Jeon N J, Na H, Jung E H, et al. A fluorene-terminated holetransporting material for highly efficient and stable perovskite solar cells[J]. Nature Energy, 2018, 3(8):682-689.
[5] Sahli F, Werner J, Kamino B A, et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency[J]. Nature Materials, 2018, 17:820-826.
[6] Hagfeldt A, Saliba M. Perovskite solar cells on a planar architecture[J]. Science, 2018, 362(6413):449-453.
[7] Bi D Q, Li X, Milic J V, et al. Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability[J]. Nature Communications, 2018, 9:4482.
[8] Christians J A, Schulz P, Tinkham J S, et al. Tailored interfaces of unencapsulated perovskite solar cells for >1000 hour operational stability[J]. Nature Energy, 2018, 3:68-74.
[9] Saidaminov M I, Kim J, Jain A, et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air[J]. Nature Energy, 2018, 3:648-654.
[10] Hong S, Lee J, Kang H, et al. High-efficiency large-area perovskite photovoltaic modules achieved via electrochemically assembled metal-filamentary nanoelectrodes[J]. Science Advances, 2018, 4(8):1-9.
[11] Bu T L, Li J, Zheng F, et al. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module[J]. Nature Communications, 2018, 9:4609.
[12] Deng Y H, Zheng X P, Bai Y, et al. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules[J]. Nature Energy, 2018, 3:560-566.
[13] Li P W, Zhang Y Q, Liang C, et al. Phase pure 2D perovskite for high-performance 2D-3D heterostructured perovskite solar cells[J]. Advanced Materials, 2018, doi:10.1002/adma.201805323.
[14] Feng J S, Zhu X J, Yang Z, et al. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy[J]. Advanced Materials, 2018, 30(35):1-9.
[15] Hu X T, Huang Z Q, Li F Y, et al. Nacre-inspired crystallization and elastic"brick-and-mortar"structure for a wearable perovskite solar module[J]. Energy & Environmental Science, 2018, doi:10.1039/C8EE01799A.
[16] Lin J, Lai M L, Dou L T, et al. Thermochromic halide perovskite solar cells[J]. Nature Materials, 2018, 17:261-267.