专题:2018年科技回眸

2018年隧道与地下工程热点回眸

  • 高攀
展开
  • 1. 中铁隧道局集团有限公司, 广州 511458;
    2. 盾构及掘进技术国家重点实验室, 郑州 450001
高攀,高级工程师,研究方向为隧道施工技术,电子信箱:94474888@qq.com

收稿日期: 2019-01-09

  修回日期: 2019-01-11

  网络出版日期: 2019-01-29

Hot research topics of tunnel and underground engineering in 2018

  • GAO Pan
Expand
  • 1. China Railway Tunnel Group, Guangzhou 511458, China;
    2. State Key Laboratory of Shield Machine and Boring Technology, Zhengzhou 450001, China

Received date: 2019-01-09

  Revised date: 2019-01-11

  Online published: 2019-01-29

摘要

2018年隧道与地下工程在工程建设和技术进步方面取得了一系列成果。本文介绍了盾构和全断面隧道掘进机、新型隧道形式重大建设和项目技术进展及新型化、智能化的研究进展,并展望了相关技术及行业应用的发展趋势。

本文引用格式

高攀 . 2018年隧道与地下工程热点回眸[J]. 科技导报, 2019 , 37(1) : 186 -195 . DOI: 10.3981/j.issn.1000-7857.2019.01.021

Abstract

The year of 2018 has witnessed a series of construction projects and technological progresses achieved by China in tunneling and underground engineering. This paper introduces the technical progress in shield construction, full-face TBM, new-type tunnel construction as well as the industry's development direction towards new-type and intelligence, so as to reflect the state-of-the-art and the development trend of the industry.

参考文献

[1] 2018年中国内地城轨交通线路概况[EB/OL].[2019-01-06].https://mp.weixin.qq.com/s/QUQ0J8dVM18klQq2fVw5Hw. Survey of urban rail transit lines in mainland China in 2018[EB/OL].[2019-01-06]. https://mp.weixin.qq.com/s/QUQ0J8dVM18klQq2fVw5Hw.
[2] 赵勇, 田四明. 截至2017年底中国铁路隧道情况统计[J]. 隧道建设, 2018, 38(3):506-508. Zhao Yong, Tian Siming. Statistics of railway tunnels in China as of 2017[J]. Tunnel Construction, 2018, 38(3):506-508.
[3] 2017年交通运输行业发展统计公报[EB/OL]. (2018-03-29)[2018-12-29]. http://zizhan.mot.gov.cn/zfxxgk/bnssj/zhzhs/2018-03/t20180329_3005087.html. Statistical Bulletin on Transportation Industry Development in 2017[EB/OL]. (2018-03-29)[2018-12-29]. http://zizhan.mot.gov.cn/zfxxgk/bnssj/zhzhs/201803/t20180329_3005087.html.
[4] 刘双. GB/T 34650-2017《全断面隧道掘进机盾构机安全要求》标准评析[J]. 建筑机械, 2018(8):20. Liu Shuang. GB/T 34650-2017 Evaluation and analysis of safety requirements for shield machines of full section tunnel boring machines[J]. Construction Machinery, 2018(8):20.
[5] 张亮. 地铁大直径盾构隧道管片结构可行性及经济性分析研究[J]. 安徽建筑, 2015, 22(5):99-101. Zhang Liang. Research on analysis of feasibility and economical efficiency of shield tunnel pipe segment in large metro[J]. Anhui Architecture, 2015, 22(5):99-101.
[6] 肖时辉. 海底超大直径盾构隧道造价分析研究[J]. 隧道建设, 2018, 38(6):907-914. Xiao Shihui. Analysis of cost of super large-diameter subsea shield tunnel[J]. Tunnel Construction, 2015, 22(5):99-101.
[7] 杨云, 李强, 邱健. 土压平衡盾构机主驱动结构设计分析[J]. 现代制造技术与装备, 2018(9):1-2. Yang Yun, Li Qiang, Qiu Jian. Design analysis of main drive structure of earth pressure balance shield machine[J]. Modern Manufacturing Technology and Equipment, 2018(9):1-2.
[8] 蒋奇, 付云升. 盾构选型与发展趋势[J]. 水利规划与设计, 2013(3):71-75. Jiang Qi, Fu Yunsheng. Shield tunnel type selection and development trend[J]. Water Resources Planning and Design, 2013(3):71-75.
[9] 王雁军, 齐梦学. 岩石掘进机关键技术展望[J]. 隧道建设, 2018, 38(9):1428-1434. Wang Yanjun, Qi Mengxue. Prospects of key technologies of rock tunnel boring machine[J]. Tunnel Construction, 2018, 38(9):1428-1434.
[10] 栾磊. 上软下硬复杂地层盾构机刀盘刀具选型[J]. 城市建筑, 2018(29):113-115. Luan Lei. Selection of cutter head cutter for shield machine in upper soft and lower hard complex stratum[J]. Urbanism and Architecture, 2018(29):113-115.
[11] 占传忠. 复合地层盾构的适应性及掘进参数的关联性分析[J]. 中国煤炭地质, 2018, 30(S1):97-104. Zhan Chuanzhong. Relevance analysis of composite strata shield tunneling adaptability and tunneling parameters[J]. Coal Geology of China, 2018, 30(S1):97-104.
[12] 胡政才, 王彬, 兰利敏. 瑞士大直径(10 m以上)隧道的掘进机施工[J]. 世界隧道, 1995(1):14-24. Hu Zhengcai, Wang Bin, Lan Limin. Tunneling machine construction of large diameter tunnel (more than 10 m) in Switzerland[J]. World Tunnel, 1995(1):14-24.
[13] Rodwell D. Protection and sustainability of historical cities[M]. Chen Jiangning, trans. Beijing:Publishing House of Electronics Industry, 2015.
[14] Gusztav K, Satpal S B. Slurry variation[J]. Tunnels & Tunnelling, 2014(5):24-28.
[15] 可变密度盾构的成功经验:香港沙田-中环线[EB/OL]. (2018-06-15)[2018-12-28]. https://www.tunnelling.cn/PLibrary/PLibraryTechnicalDetail.aspx?Tech=2417. Successful experience of variable density shields:Sha Tin, Hong Kong-Central Link[EB/OL]. (2018-06-15)[2018-12-28]. https://www.tunnelling.cn/PLibrary/PLibraryTechnicalDetail.aspx?Tech=2417.
[16] 新"KM21TM"——实现山岭隧道完全机械化施工[EB/OL]. (2018-04-17)[2018-12-28]. https://www.tunnelling.cn/PNews/WeChatDetail.aspx?weChatId=323. New "KM21TM"-Complete mechanized construction of mountain tunnels[EB/OL]. (2018-04-17)[2018-12-28]. https://www.tunnelling.cn/PNews/WeChatDetail.aspx?weChatId=323.
[17] 齐中熙. 中铁隧道局:国内首台使用国产主轴承的再制造盾构机应用成功[J]. 表面工程与再制造, 2018, 18(3):45. Qi Zhongxi. China Railway Tunnel Group:Successful application of the first remanufactured shield machine using domestic main bearings in China[J]. Surface Engineering & Remanufacturing, 2018, 18(3):45.
[18] 康宝生. 绿色环保经济发展与隧道掘进机再制造探析[J]. 隧道建设, 2013, 33(4):259-265. Kang Baosheng. Analysis on green, environment-friendly economical development and remanufacturing of tunnel boring machines (TBMs)[J]. Tunnel Construction, 2013, 33(4):259-265.
[19] 易新乾. 盾构/工程机械再制造推进中14个问题探讨[J]. 隧道建设, 2018, 38(7):1079-1086. Yi Xinqian. Discussion on 14 issues in remanufacturing process of shield/construction machinery[J]. Tunnel Construction, 2018, 38(7):1079-1086.
[20] 尚伟, 王百泉. 盾构刀具磨损超声波检测技术研究[J]. 建筑机械化, 2018, 39(1):56-59. Shang Wei, Wang Baiquan. Research on ultrasound testing technology of shield tool wear[J]. Construction Mechanization, 2018, 39(1):56-59.
[21] 崔蓬勃, 沈彤. 新型土压平衡盾构机刀具磨损检测系统研究[J]. 江苏建筑职业技术学院学报, 2018, 18(1):49-52. Cui Pengbo, Shen Tong. Study on wear detection system of new EPB shield machine cutter[J]. Journal of Jiangsu Jianzhu Institute, 2018, 18(1):49-52.
[22] 赵海雷, 孙振川. Ca0.68Si9Al3(ON)16:Eu2+带状荧光纳米纤维的制备、性能及盾构盘型滚刀的磨损检测[J]. 无机材料学报, 2018, 33(8):866-872. Zhao Hailei Sun Zhenchuan. Synthesis, property and wear detection of disc cutter for shield tunneling machine of nanobelt Ca0.68Si9Al3(ON)16:Eu2+ luminescence fibers[J]. Journal of Inorganic Materials, 2018, 33(8):866-872.
[23] 陈健, 刘红军, 闵凡路, 等. 盾构隧道刀具更换技术综述[J]. 中国公路学报, 2018, 31(10):36-46. Chen Jian, Liu Hongjun, Min Fanlu, et al. Technical review of cutter replacement in shield tunneling[J]. China Journal of Highway and Transport, 2018, 31(10):36-46.
[24] 韩伟锋, 陈馈, 周建军, 等. 滚刀常压换刀技术研究[J]. 隧道建设, 2015, 35(12):1351-1355. Han Weifeng, Cheng Kui, Zhou Jianjun, et al. Study on Replacement of disc cutter under atmospheric condition[J]. Tunnel Construction, 2015, 35(12):1351-1355.
[25] 日本盾构换刀技术旋转式更换装置大幅缩短作业时间[EB/OL].[2019-01-06]. https://www.tunnelling.cn/PNews/WeChatDetail.aspx?weChatId=264. Japanese shield tool change technology rotary replacement device greatly shortens working time[EB/OL]. https://www.tunnelling.cn/PNews/WeChatDetail.aspx?weChatId=264.
[26] 霍军周, 黄晓琦, 孟智超, 等. 一种外置全断面岩石掘进机换刀机器人机身结构:CN108393881A[P]. 2018-08-14. Huo Junzhou, Huang Xiaoqi, Meng Zhichao, et al. A frame structure of external tool changer robot for TBM:CN108393881A[P]. 2018-08-14.
[27] 霍军周, 黄晓琦, 孟智超, 等. 一种内置全断面岩石掘进机换刀机器人机身结构[P]. 中国:CN108340366A, 2018-07-31. Huo Junzhou, Huang Xiaoqi, Meng Zhichao, et al. A Frame structure of built-in tool changer robot for TBM:CN1083403-66A[P]. 2018-07-31.
[28] 李红侠. 我国智能高铁自动驾驶技术应用进展[J/OL].[2019-01-10]. https://doi.org/10.13238/j.issn.1004-2954.20-1811260001. Li Hongxia. Development of intelligent high-speed rail autopilot technology in China[J/OL].[2019-01-10]. https://doi.org/10.13238/j.issn.1004-2954.201811260001.
[29] 日本第一条磁悬浮铁路线隧道开挖-全世界最快铁路[EB/OL]. https://www.tunnelling.cn/PNews/WeChatDetail.aspx?weChatId=82. Tunnel excavation of Japan's first maglev railway line-the fastest railway in the world[EB/OL].[2019-01-10]. https://www.tunnelling.cn/PNews/WeChatDetail.aspx?weChatId=82.
[30] 邓自刚, 李海涛. 高温超导磁悬浮车研究进展[J]. 中国材料进展, 2017, 36(5):329-334. Deng Zigang, Li Haitao. Recent Development of high-temperature superconducting maglev[J]. Materials China, 2017, 36(5):329-334.
[31] 为什么高铁不能随意提速?[J]. 军事文摘, 2018(14):30-31. Why can't high-speed railway speed up at will?[J]. Military Digest, 2018(14):30-31.
[32] 李先明.加强高速铁路勘察设计管理工作的探索与实践[J]. 国防交通工程与技术, 2016, 14(4):22-25. Li Xianming. An exploration into and practice of strengthening the management work in the survey and design of highspeed railways[J]. Traffic Engineering and Technology for National Defense, 2016, 14(4):22-25.
[33] 周大进, 崔宸昱, 马家庆, 等. 真空管道HTS侧浮系统中线性电机起动特性研究[J]. 西南交通大学学报, 2016, 51(4):750-758. Zhou Dajin, Cui Chenyu, Ma Jiaqing, et al. Starting characteristics of linear motor in evacuated tube hts side-suspended maglev system[J]. Journal of Southwest Jiaotong University, 2016, 51(4):750-758.
[34] 真空管道高温超导侧浮系统取得重要实验进展[EB/OL].[2019-01-06]. https://news.swjtu.edu.cn/ShowNews-11913-0-1.shtml. Important experimental progress in high-temperature superconducting side floating system of vacuum pipeline[EB/OL].[2019-01-06]. https://news.swjtu.edu.cn/ShowNews-11913-0-1.shtml.
[35] 黄柳楠, 李欣, 伍绍博. 水中悬浮隧道关键问题研究进展[J]. 中国港湾建设, 2017, 37(12):7-10. Huang Liunan, Li Xin, Wu Shaobo. Research progress of key issues concerning submerged floating tunnels[J]. China Harbour Engineering, 2017, 37(12):7-10.
[36] 蒋树屏, 李勤熙. 水中悬浮隧道概念设计及动力分析理论与模型试验进展[J]. 隧道建设, 2018, 38(3):352-359. Jiang Shuping, Li Qinxi. Development of conceptual design, dynamic analysis theory and model experiment of submerged floating tunnels[J]. Tunnel Construction, 2018, 38(3):352-359.
[37] 李凤远, 韩伟峰. 建设盾构TBM工程大数据云平台创新引领行业技术发展[J].工程机械与维修, 2018(2):113-115. Li Fengyuan, Han Weifeng. Innovation of big data cloud platform for shield TBM project leads technological development of the industry[J]. Construction Machinery & Maintenance, 2018(2):113-115.
[38] 骞宇澄, 刘昭策. 深度学习的实现与发展——从神经网络到机器学习[J]. 电子技术与软件工程, 2017(11):30-31. Yu Yucheng, Liu Zhaoce. Realization and development of deep learning:From neural network to machine learning[J]. Electronic Technology & Software Engineering, 2017(11):30-31.
[39] 薛亚东, 李宜城. 基于深度学习的盾构隧道衬砌病害识别方法[J]. 湖南大学学报(自然科学版), 2018, 45(3):100-109. Xue Yadong, Li Yicheng. A method of disease recognition for shield tunnel lining based on deep learning[J]. Journal of Hunan University(Natural Sciences), 2018, 45(3):100-109.
[40] 柳厚祥, 李汪石, 查焕奕, 等. 基于深度学习技术的公路隧道围岩分级方法[J]. 岩土工程学报, 2018, 40(10):1809-1817. Liu Houxiang, Li Wangshi, Zha Zhuanyi, et al. Method for surrounding rock mass classification of highway tunnels based on deep learning technology[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10):1809-1817.
[41] 柴雪松, 朱兴永, 李健超, 等. 基于深度卷积神经网络的隧道衬砌裂缝识别算法[J]. 铁道建筑, 2018, 58(6):60-65. Chai Xuesong, Zhu Xingyong, Li Jianchao, et al. Tunnel lining crack identification algorithm based on deep convolutional neural network[J]. Railway Engineering, 2018, 58(6):60-65.
[42] 党巾涛. 基于CNN的隧道地质超前预报GPR实测数据分类研究及应用[D]. 西安:长安大学, 2018. Dang Jintao. Research and application of gpr data classification for tunnel geological advance prediction based on CNN[D]. Xian:Chang'an University, 2018.
文章导航

/