[1] Li Z, Li D, Tsun A, et al. FOXP3+ regulatory T cells and their functional regulation[J]. Cellular & Molecular Immunology, 2015, 12(5):558-565.
[2] Sakaguchi S, Vignali D A, Rudensky A Y, et al. The plasticity and stability of regulatory T cells[J]. Nature Reviews Immunology, 2013, 13(6):461-467.
[3] Avci C B, Dodurga Y, Gundogdu G, et al. Regulation of URG4/URGCP and PPARalpha gene expressions after retinoic acid treatment in neuroblastoma cells[J]. Tumour Biology, 2013, 34(6):3853-3857.
[4] O'rourke D M, Nasrallah M P, Desai A, et al. A single dose of peripherally infused EGFRvⅢ-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma[J]. Science Translational Medicine, 2017, 9(399):eaaa0984.
[5] Abramson J S, Mcgree B, Noyes S, et al. Anti-CD19 CAR T cells in CNS diffuse large-B-Cell lymphoma[J]. New England Journal of Medicine, 2017, 377(8):783-784.
[6] Zhen A, Peterson C W, Carrillo M A, et al. Long-term persistence and function of hematopoietic stem cell-derived chimeric antigen receptor T cells in a nonhuman primate model of HIV/AIDS[J]. PLoS Pathogens, 2017, 13(12):e1006753.
[7] Zhou Z C, Wang J, Cai Z H, et al. Association between vitamin D receptor gene Cdx2 polymorphism and breast cancer susceptibility[J]. Tumour Biology, 2013, 34(6):3437-3441.
[8] Geiger T L, Tauro S. Nature and nurture in Foxp3(+) regulatory T cell development, stability, and function[J]. Human Immunology, 2012, 73(3):232-239.
[9] Shevach E M, Thornton A M. tTregs, pTregs, and iTregs:similarities and differences[J]. Immunological Reviews, 2014, 259(1):88-102.
[10] Vieira P L, Christensen J R, Minaee S, Et Al. IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+CD25+ regulatory T cells[J]. Journal of Immunology, 2004, 172(10):5986-5993.
[11] Weiner H L. Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells[J]. Immunological Reviews, 2001, 182(207-214.
[12] Hori S, Sakaguchi S. Foxp3:A critical regulator of the development and function of regulatory T cells[J]. Microbes and Infection, 2004, 6(8):745-751.
[13] Tang Q, Bluestone J A. The Foxp3+ regulatory T cell:A jack of all trades, master of regulation[J]. Nature Immunology, 2008, 9(3):239-244.
[14] Ostmann A, Paust H J, Panzer U, et al. Regulatory T cell-derived IL-10 ameliorates crescentic GN[J]. Journal of the American Society of Nephrology, 2013, 24(6):930-942.
[15] Frimpong-Boateng K, Van Rooijen N, Geiben-Lynn R. Regulatory T cells suppress natural killer cells during plasmid DNA vaccination in mice, blunting the CD8+ T cell immune response by the cytokine TGFbeta[J]. PloS One, 2010, 5(8):e12281.
[16] Collison L W, Workman C J, Kuo T T, Et Al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function[J]. Nature, 2007, 450(7169):566-569.
[17] Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation[J]. Journal of Experimental Medicine, 2000, 192(2):295-302.
[18] Oderup C, Cederbom L, Makowska A, et al. Cytotoxic T lymphocyte antigen-4-dependent down-modulation of costimulatory molecules on dendritic cells in CD4+ CD25+ regulatory Tcell-mediated suppression[J]. Immunology, 2006, 118(2):240-249.
[19] Mellor A L, Munn D H. IDO expression by dendritic cells:tolerance and tryptophan catabolism[J]. Nature Reviews:Immunology, 2004, 4(10):762-774.
[20] Huang C T, Workman C J, Flies D, et al. Role of LAG-3 in regulatory T cells[J]. Immunity, 2004, 21(4):503-513.
[21] Liang B, Workman C, Lee J, et al. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class Ⅱ[J]. Journal of Immunology, 2008, 180(9):5916-5926.
[22] Zhao D M, Thornton A M, Dipaolo R J, et al. Activated CD4+ CD25+ T cells selectively kill B lymphocytes[J]. Blood, 2006, 107(10):3925-3932.
[23] Ren X, Ye F, Jiang Z, et al. Involvement of cellular death in TRAIL/DR5-dependent suppression induced by CD4(+)CD25(+) regulatory T cells[J]. Cell Death and Differentiation, 2007, 14(12):2076-2084.
[24] Oberle N, Eberhardt N, Falk C S, et al. Rapid suppression of cytokine transcription in human CD4+CD25 T cells by CD4+ Foxp3+ regulatory T cells:independence of IL-2 consumption, TGF-beta, and various inhibitors of TCR signaling[J]. Journal of Immunology, 2007, 179(6):3578-3587.
[25] Deaglio S, Dwyer K M, Gao W, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression[J]. Journal of Experimental Medicine, 2007, 204(6):1257-1265.
[26] Zarek P E, Huang C T, Lutz E R, et al. A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells[J]. Blood, 2008, 111(1):251-259.
[27] Bopp T, Becker C, Klein M, et al. Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression[J]. Journal of Experimental Medicine, 2007, 204(6):1303-1310.
[28] Tai X, Cowan M, Feigenbaum L, et al. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2[J]. Nature Immunology, 2005, 6(2):152-162.
[29] Long M, Park S G, Strickland I, Et Al. Nuclear factor-kappaB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor[J]. Immunity, 2009, 31(6):921-931.
[30] Mantel P Y, Ouaked N, Ruckert B, et al. Molecular mechanisms underlying FOXP3 induction in human T cells[J]. Journal of Immunology, 2006, 176(6):3593-3602.
[31] Yao Z, Kanno Y, Kerenyi M, Et Al. Nonredundant roles for Stat5a/b in directly regulating Foxp3[J]. Blood, 2007, 109(10):4368-4375.
[32] Burchill M A, Yang J, Vogtenhuber C, et al. IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells[J]. Journal of Immunology, 2007, 178(1):280-290.
[33] Zheng Y, Josefowicz S, Chaudhry A, et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory Tcell fate[J]. Nature, 2010, 463(7282):808-812.
[34] Laurence A, Tato C M, Davidson T S, et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation[J]. Immunity, 2007, 26(3):371-381.
[35] Liu Y, Wang L, Predina J, et al. Inhibition of p300 impairs Foxp3(+) T regulatory cell function and promotes antitumor immunity[J]. Nature Medicine, 2013, 19(9):1173-1177.
[36] Van Loosdregt J, Brunen D, Fleskens V, et al. Rapid temporal control of Foxp3 protein degradation by sirtuin-1[J]. PloS One, 2011, 6(4):e19047.
[37] Nie H, Zheng Y, Li R, Et Al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-alpha in rheumatoid arthritis[J]. Nature Medicine, 2013, 19(3):322-328.
[38] Chunder N, Wang L, Chen C, et al. Cyclin-dependent kinase 2 controls peripheral immune tolerance[J]. Journal of Immunology, 2012, 189(12):5659-5666.
[39] Bayer A L, Pugliese A, Malek T R. The IL-2/IL-2R system:from basic science to therapeutic applications to enhance immune regulation[J]. Immunologic Research, 2013, 57(1-3):197-209.
[40] Chen Z, Barbi J, Bu S, et al. The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3[J]. Immunity, 2013, 39(2):272-285.
[41] Van Loosdregt J, Fleskens V, Fu J, et al. Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity[J]. Immunity, 2013, 39(2):259-271.
[42] Luo X, Nie J, Wang S, Et Al. Poly(ADP-ribosyl)ation of FOXP3 protein mediated by PARP-1 regulates the function of regulatory T cells[J]. Journal of Biological Chemistry, 2016, 291(3):1201.
[43] Mays L E, Ammon-Treiber S, Mothes B, et al. Modified Foxp3 mRNA protects against asthma through an IL-10-dependent mechanism[J]. Journal of Clinical Investigation, 2013, 123(3):1216-1228.
[44] Mo J H, Chung Y J, Kim J H. T cell transcriptional factors in allergic rhinitis and its association with clinical features[J]. Asia Pacific Allergy, 2013, 3(3):186-193.
[45] Yin Y, Wu M, Nie G, et al. HtrA3 is negatively correlated with lymph node metastasis in invasive ductal breast cancer[J]. Tumour Biology, 2013, 34(6):3611-3617.
[46] Kabbage M, Trimeche M, Ben Nasr H, et al. Tropomyosin-4 correlates with higher SBR grades and tubular differentiation in infiltrating ductal breast carcinomas:an immunohistochemical and proteomics-based study[J]. Tumour Biology, 2013, 34(6):3593-3602.
[47] Zou W. Regulatory T cells, tumour immunity and immunotherapy[J]. Nature Reviews:Immunology, 2006, 6(4):295-307.
[48] Nishikawa H, Kato T, Tawara I, et al. Definition of target antigens for naturally occurring CD4(+) CD25(+) regulatory T cells[J]. Journal of Experimental Medicine, 2005, 201(5):681-686.
[49] CHAUDARY N, HILL R P. Hypoxia and metastasis[J]. Clinical Cancer Research, 2007, 13(7):1947-1949.
[50] Pan X D, Mao Y Q, Zhu L J, et al. Changes of regulatory T cells and FoxP3 gene expression in the aging process and its relationship with lung tumors in humans and mice[J]. Chinese Medical Journal (Engl.), 2012, 125(11):2004-2011.
[51] Ye L, Guan S, Zhang C, et al. Circulating autoantibody to FOXP3 may be a potential biomarker for esophageal squamous cell carcinoma[J]. Tumour Biology, 2013, 34(3):1873-1877.
[52] Mcinnes N, Sadlon T J, Brown C Y, et al. FOXP3 and FOXP3-regulated microRNAs suppress SATB1 in breast cancer cells[J]. Oncogene, 2012, 31(8):1045-1054.
[53] Trzonkowski P, Bieniaszewska M, Juscinska J, et al. First-inman clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+ CD25+ CD127-T regulatory cells[J]. Clinical Immunology, 2009, 133(1):22-26.
[54] Di Ianni M, Falzetti F, Carotti A, et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation[J]. Blood, 2011, 117(14):3921-3928.
[55] Brunstein C G, Blazar B R, Miller J S, et al. Adoptive transfer of umbilical cord blood-derived regulatory T cells and early viral reactivation[J]. Biology of Blood and Marrow Transplantation, 2013, 19(8):1271-1273.
[56] Marek-Trzonkowska N, Mysliwec M, Siebert J, et al. Clinical application of regulatory T cells in type 1 diabetes[J]. Pediatric Diabetes, 2013, 14(5):322-332.
[57] Ji W W, Li R P, Li M, et al. Antidepressant-like effect of essential oil of Perilla frutescens in a chronic, unpredictable, mild stress-induced depression model mice[J]. Chinese Journal of Natural Medicines, 2014, 12(10):753-759.
[58] Lin F, Luo X, Tsun A, et al. Kaempferol enhances the suppressive function of Treg cells by inhibiting FOXP3 phosphorylation[J]. International Immunopharmacology, 2015, 28(2):859-865.
[59] DENG G, NAGAI Y, XIAO Y, et al. Pim-2 Kinase Influences Regulatory T Cell Function and Stability by Mediating Foxp3 Protein N-terminal Phosphorylation[J]. Journal of Biological Chemistry, 2015, 290(33):20211-20220.
[60] Elinav E, Waks T, Eshhar Z. Redirection of regulatory T cells with predetermined specificity for the treatment of experimental colitis in mice[J]. Gastroenterology, 2008, 134(7):2014-2024.
[61] Hemmer B, Kerschensteiner M, Korn T. Role of the innate and adaptive immune responses in the course of multiple sclerosis[J]. The Lancet Neurology, 2015, 14(4):406-419.
[62] Liu Y, Yang N, Zuo P. cDNA microarray analysis of gene expression in the cerebral cortex and hippocampus of BALB/c mice subjected to chronic mild stress[J]. Cellular and Molecular Neurobiology, 2010, 30(7):1035-1047.
[63] Macdonald K G, Hoeppli R E, Huang Q, et al. Alloantigenspecific regulatory T cells generated with a chimeric antigen receptor[J]. Journal of Clinical Investigation, 2016, 126(4):1413-1424.
[64] Blat D, Zigmond E, Alteber Z, et al. Suppression of murine colitis and its associated cancer by carcinoembryonic antigenspecific regulatory T cells[J]. Molecular Theraphy, 2014, 22(5):1018-1028.
[65] Smith T T, Stephan S B, Moffett H F, et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers[J]. Nat Nanotechnol, 2017, 12(8):813-820.
[66] Eyquem J, Mansilla-Soto J, Giavridis T, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection[J]. Nature, 2017, 543(7643):113-117.
[67] Pogulis R J, Pease L R. A retroviral vector that directs simultaneous expression of alpha and beta T cell receptor genes[J]. Human Gene Therapy, 1998, 9(15):2299-2304.
[68] Gulley J L, Arlen P M, Tsang K Y, et al. Pilot study of vaccination with recombinant CEA-MUC-1-TRICOM poxviralbased vaccines in patients with metastatic carcinoma[J]. Clinical Cancer Research, 2008, 14(10):3060-3069.
[69] Robbins P F, Morgan R A, Feldman S A, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1[J]. Journal of Clinical Oncology, 2011, 29(7):917-924.
[70] Bilusic M, Heery C R, Arlen P M, et al. Phase I trial of a recombinant yeast-CEA vaccine (GI-6207) in adults with metastatic CEA-expressing carcinoma[J]. Cancer Immunology, Immunotherapy, 2014, 63(3):225-234.
[71] Klebanoff C A, Rosenberg S A, Restifo N P. Prospects for gene-engineered T cell immunotherapy for solid cancers[J]. Nature Medicine, 2016, 22(1):26-36.
[72] Attridge K, Walker L S. Homeostasis and function of regulatory T cells (Tregs) in vivo:lessons from TCR-transgenic Tregs[J]. Immunological Reviews, 2014, 259(1):23-39.