综述

数据科学范式下的钙钛矿结构铁电新材料研究

  • 于剑 ,
  • 褚君浩
展开
  • 1. 东华大学功能材料研究所, 上海 201620;
    2. 中国科学院上海技术物理研究所;红外物理国家重点实验室, 上海 200092
于剑,教授,研究方向为钙钛矿结构磁电、压电、光电陶瓷新材料及压电陶瓷材料器件一体化技术,电子信箱:jyu@dhu.edu.cn

收稿日期: 2018-04-11

  修回日期: 2018-10-15

  网络出版日期: 2019-06-20

基金资助

国家自然科学基金项目(61771122)

Design of new perovskite-type oxide ferroelectric materials within data science paradigm

  • YU Jian ,
  • CHU Junhao
Expand
  • 1. Institute of Functional Materials, Donghua University, Shanghai 201620, China;
    2. National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200092, China

Received date: 2018-04-11

  Revised date: 2018-10-15

  Online published: 2019-06-20

摘要

材料基因组计划倡导预测式新材料研发理念,推进高通量数据生产和利用技术,关注材料全生命周期价值。因此,材料基因组计划的执行需要在材料科学系统工程的框架下,集成统一计算、实验和理论等研究方法,以数据科学新范式为牵引、协同运用实验观测、理论建模和计算仿真研究范式,最终建立相关材料体系的性能与材料基因(原子系统的组成与结构)、工艺参数与使役条件之间的量化关系和数据库,实现新材料的按需设计和应用。本文在简单探讨科学研究范式、材料基因组计划和材料科学系统工程基本概念和方法的基础上,以钙钛矿结构氧化物铁电压电材料研究为例,探讨了数据科学范式下的新材料研究实践。结果表明,数据挖掘驱动的新材料设计确实可以降低探索时间和实验任务,加快新材料的发现和应用进程。

本文引用格式

于剑 , 褚君浩 . 数据科学范式下的钙钛矿结构铁电新材料研究[J]. 科技导报, 2019 , 37(11) : 71 -81 . DOI: 10.3981/j.issn.1000-7857.2019.11.009

Abstract

The materials genome initiative (MGI) issued in 2011 convokes a new paradigm of data science complementing with empirical observation, theoretical model and computation simulation, and comprehensively integrates computing, experimental and theoretical methods to produce and deal with big-data under the framework of system engineering of material science. Thereafter, the relationships between properties and material genome (composition and structure of atom systems), processing parameters and service conditions are mined out of data for designing and deployment of new material in accordance with the desired goal. In this article, research paradigms, MGI and system engineering of material science are briefly introduced. Then how to design new materials within data science paradigm is presented in detail through an example in the field of perovskite-type oxide ferroelectric piezoceramics. Finally the result demonstrates that the method of data-mining driven designing within data science paradigm is able to reduce time-to-insight and human effort on synthesis, thus accelerating new materials discovery and deployment.

参考文献

[1] Hey T. The fourth paradigm:Data-intensive scientific discovery[C]. At International Symposium on Information Management in a Changing World (IMCW). Ankara, 2012.
[2] 邓仲华, 李志芳. 科学研究范式的演化——大数据时代的科学研究第四范式[J]. 情报资料工作, 2013, 4:19-23. Deng Zhonghua, Li Zhifang. The evolution of scientific research paradigm-The fourth paradigm of scientific research in the era of big data[J]. Intelligence & Materials Work, 2013, 4:19-23.
[3] 赵斌. 第四范式:基于大数据的科学研究[EB/OL]. (2015-10-26)[2018-10-20]. http://blog.sciencenet.cn/blog-502444-9311-55.html. Zhao Bin. Fourth paradigm:Scientific research based on big data[EB/OL]. (2015-10-26)[2018-10-20]. http://blog.sciencenet.cn/blog-502444-931155.html.
[4] Agrawal A, Choudhary A. Perspective:Materials informatics and big data:Realization of the "fourth paradigm" of science in materials science[J]. APL Materials, 2016, 4:053208.
[5] Holdren J P. Materials genome initiative for global competitiveness[R]. Washington, DC:NSTC, 2011.
[6] 汪洪, 向勇, 项晓东, 等. 材料基因组——材料研发新模式[J]. 科技导报, 2015, 33(10):13-19. Wang Hong, Xiang Yong, Xiang Xiaodong, et al. Materials genome enables research and development revolution[J]. Science & Technology Review, 2015, 33:13-19.
[7] "材料基因工程关键技术与支撑平台"重点专项2018年度项目申报指南[Z]. 北京:科学技术部, 2017. 2018 Key project application guideline for "Key technology and support platform for material genome engineering"[Z]. Beijing:Ministry of science and technology, 2017.
[8] 顾秉林. 材料科学系统工程:建立我国新材料产业体系的关键[J]. 科技导报, 2015, 33(10):1. Gu Binglin. System engineering of materials science:the key to establish China's new material industry system[J]. Science & Technology Review, 2015, 33(10):1.
[9] 陈立泉. 师昌绪先生与中国版"材料基因计划"[J]. 科技导报, 2015, 33(10):126. Chen Liquan. Mr. Shi Changxu and Chinese version of Material Genome Initiative[J]. Science & Technology Review, 2015, 33(10):126.
[10] 刘伟. 关于人工智能若干重要问题的思考[J]. 学术前沿, 2016, 4(上):6-11. Liu Wei. Some important questions on artificial intelligence[J]. The Academic Frontier, 2016, 4:6-11.
[11] 刘伟. 人机智能融合:人工智能发展的未来方向[J]. 学术前沿, 2017, 10(下):26-31. Liu Wei. Human-computer intelligent integration:the future of artificial intelligence[J]. The Academic Frontier, 2017, 10:26-31.
[12] Lookman T, Alexander F J, Bishop A R. Perspective:Codesign for materials science:An optimal learning approach[J]. APL Mater, 2016, 4:053501.
[13] Resta R. Macroscopic polarization in crystalline dielectrics:the geometric phase approach[J]. Review Modern Physics, 1994, 66:899-916.
[14] Armiento R, Kozinsky B, Fornari M, Ceder G. Screening for high-performance piezoelectrics using high-throughput density functional theory[J]. Physics Review B, 2011, 84:014103.
[15] Butler K T, Frost J M, Skelton J M, et al. Computational materials design of crystalline solids[J]. Chemical Society Reviews, 2016, 45:6138-6146.
[16] Lines M E, Glass A M. Principles and applications of ferroelectrics and related materials[M]. Oxford:Clarendon Press, 2001.
[17] Stringer C J, Shrout T R, Randall C A, et al. Classification of transition temperature behavior in ferroelectric PbTiO3-Bi (Me'Me")O3 solid solutions[J]. Journal of Applied Physics, 2006, 99:024106.
[18] Zhang L L, Yu J, Itoh M. Structural phase transitions of robust insulating Bi1-xLaxFe1-yTiyO3 multiferroics[J]. Journal of Applied Physics, 2014, 115:123523.
[19] Yu J, An F F, Cao F. Ferroic phase transition of tetragonal Pb0.6-xCaxBi0.4(Ti0.75Zn0.15Fe0.1)O3 ceramics:Factors determining Curie temperature[J]. Japanese Journal of Applied Physics, 2014, 53:051501.
[20] Abrahams S C. Systematic prediction of new ferroelectrics in space groups P31 and P32[J]. Acta Crystallographica Section B, 2003, 59:541-556.
[21] Abrahams S C, Kurtz S K, Jamieson P B. Atomic displacement relationship to Curie temperature and spontaneous polarization in displacive ferroelectrics[J]. Physics Review, 1968, 172:551-553.
[22] Sai Sunder V V S S, Halliyal A, Umarji A M. Investigation of tetragonal distortion in the PbTiO3-BiFeO3 system by hightemperature X-ray diffraction[J]. Journal of Materials Research, 1995, 10:1301-1306.
[23] Suchomel M R, Davies P K. Enhanced Tetragonality in xPbTiO3-(1-x)Bi(Zn1/2Ti1/2)O3 and Related Solid Solution Systems[J]. Applied Physics Letters, 2005, 86:262905.
[24] 陆文聪, 李国正, 刘亮, 等. 化学数据挖掘方法与应用[M]. 北京:化学工业出版社, 2011. Lu Wencong, Li Guozheng, Liu Liang, et al. Chemical data mining and applications[M]. Beijing:Chemical Industry Press, 2011.
[25] Zhang L L, Hou X B, Yu J. Ferroelectric and piezoelectric properties of high temperature (Bi, La)FeO3-Bi(Zn1/2Ti1/2)O3-PbTiO3 ceramics at rhombohedral/tetragonal coexistent phase[J]. Japanese Journal of Applied Physics, 2015, 54:081501.
[26] Lin Y, Zhang L L, Zheng W L, et al. Structural phase boundary of BiFeO3-Bi(Zn1/2Ti1/2)O3-BaTiO3 lead-free ceramics and their piezoelectric properties[J]. Journal of Materials Science Materials in Electronics, 2015, 26:7351-7360.
[27] Hou X B, Yu J. Perovskite-structured BiFeO3-Bi(Zn1/2Ti1/2)O3-PbTiO3 solid solution piezoelectric ceramics with Curie temperature about 700℃[J]. Journal of the American Ceramic Society, 2013, 96:2218-2224.
[28] 传感器:"感知中国"的瓶颈[EB/OL]. (2016-12-05)[2018-10-20]. http://news.sciencenet.cn/htmlnews/2016/12/362734.shtm. Sensors:The bottleneck of Sensing China[EB/OL]. (2016-12-05)[2018-10-20]. http://news.sciencenet.cn/htmlnews/2016/12/362734.shtm.
[29] Stevenson T, Martin D G, Cowin P I. Piezoelectric materials for high temperature transducers and actuators[J]. Journal of Materials Science:Mater. Electron, 2015, 26:9256-9267.
[30] 国务院" 十三五"国家科技创新规划[R/OL]. (2016-08-08)[2018-11-20]. http://www.gov.cn/zhengce/content/2016-08/08/content_5098072.htm. The State Council's 13th five-year program for national science and technology innovation[R/OL]. (2016-08-08)[2018-11-20]. http://www.gov.cn/zhengce/content/2016-08/08/content_5098072.htm.
[31] Oeko-Institut E V, Fraunhofer-Institut I Z M. Report for the European Commission[R]. 2016.
[32] Rodel J, Jo W, Seifert K T P, et al. Perspective on the Development of Lead-free Piezoceramics[J]. Journal of the American Ceramic Society, 2009, 92:1153-1177.
[33] Adachi M, Akishige Y, Deguchi K, et al. Perovskite-type oxides, in Landolt-Börnstein numerical data and functional relationships in science and technology:Ferroelectrics and related substances[B]. Group 3 Volume 36, Subvolume A1, 2001, 67-505.
[34] Zhang L L, Yu J. Robust insulating La and Ti co-doped BiFeO3 multiferroic ceramics[J]. Journal of Materials Science:Mater. Electron, 2016, 27:8725-8733.
[35] Chen J, Xing X R, Sun C, et al. Zero thermal expansion in PbTiO3-based perovskites[J]. Journal of the American Chemical Society, 2008, 130:1144-1145.
[36] An F F, He W Z, Wang T T, et al. Preparation and electrical properties of modified lead titanate ceramics[J]. Ferroelectrics, 2010, 409:62-65.
[37] Lin Y, Zhang L L, Yu J. Piezoelectric and ferroelectric property in Mn-doped 0.69BiFeO3-0.04Bi(Zn1/2Ti1/2)O3-0.27BaTiO3 lead-free piezoceramics[J]. Journal of Materials Science:Mater. Electron, 2016, 27:1955-1965.
[38] Zheng W L, Yu J. Residual tensile stresses and piezoelectric properties in BiFeO3-Bi(Zn1/2Ti1/2)O3-PbTiO3 ternary solid solution perovskite ceramics[J]. AIP Advances, 2016, 6:085314.
[39] Yu J, Zhang L L, Hou X B, et al. Novel perovskite-type ferroelectrics with high curie temperature and piezoresponse[A]. IEEE Xplore, doi:10.1109/ISAF.2016.7578087.
[40] Zhang L L, Yu J. Residual tensile stress in robust insulating rhombohedral Bi1-xLaxFe1-yTiyO3 multiferroic ceramics and its ability to pin ferroelectric polarization switching[J]. Applied Physics Letters, 2015, 106:112907.
文章导航

/