综述

纳米纸在绿色电子器件中的研究进展

  • 季春燕 ,
  • 李新国 ,
  • 刘恺然 ,
  • 李文波 ,
  • 李红变
展开
  • 1. 京东方科技集团股份有限公司, 北京 100176;
    2. 国家纳米科学中心纳米生物效应与安全性实验室, 北京 100190
季春燕,高级研究员,研究方向为柔性电子器件,电子信箱:xiaoyan_200518@163.com

收稿日期: 2018-04-10

  修回日期: 2018-11-26

  网络出版日期: 2019-06-20

基金资助

企业委托开发项目柔性复合传感器(19823)

Nanocellulose paper fabrication and application in green electronics: A review

  • JI Chunyan ,
  • LI Xinguo ,
  • LIU Kairan ,
  • LI Wenbo ,
  • LI Hongbian
Expand
  • 1. BOE Technology Group Co., Ltd., Beijing 100176, China;
    2. CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China

Received date: 2018-04-10

  Revised date: 2018-11-26

  Online published: 2019-06-20

摘要

纳米纸是由纳米纤维素自组装形成的二维薄膜材料,具有高透明性和极低的表面粗糙度,是一种理想的柔性电子器件基底材料。与合成高分子基底材料相比,纳米纸可以生物降解,为绿色电子器件的制备提供了条件。本文梳理了纳米纸的制备工艺、纳米纸的特点及纳米纸在柔性绿色电子器件,尤其是场效应晶体管、能源器件和发光器件等方面的应用。针对纳米纸在大规模低成本制备、在柔性绿色电子器件中存在的问题进行了分析,并对纳米纸在生物传感中的应用进行了展望。

本文引用格式

季春燕 , 李新国 , 刘恺然 , 李文波 , 李红变 . 纳米纸在绿色电子器件中的研究进展[J]. 科技导报, 2019 , 37(11) : 82 -91 . DOI: 10.3981/j.issn.1000-7857.2019.11.010

Abstract

Nanopaper is a kind of film which is made up of nanocellulose fibers. Featuring high transparency and low roughness, nanopaper is considered an ideal substrate for flexible electronics. Compared with synthetic polymers, nanopaper is decomposable and provides a promising candidate for the fabrication of green electronics. In this review, fabrication of nanopaper, its properties and applications in field effect transistors, energy devices and OLEDs are summarized. At last, challenges to nanopaper including large-scale and low-cost fabrication and application in green electronics are addressed. The potential application of nanopaper in biosensors is also discussed.

参考文献

[1] Scanziani M, Haüsser M. Electrophysiology in the age of light[J]. Nature, 2009, 461(7266):930-939.
[2] Payen A. Memoire sur la composition du tissu propre des plantes et du ligneux[J]. Comptes Rendus, 1938(7):1052-1056.
[3] Zhu H, Fang Z, Preston C, et al. Transparent paper:Fabrications, properties, and device applications[J]. Energy & Environmental Science, 2014(7):269-287.
[4] Zhu H, Jia Z, Chen Y, et al. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir[J]. Nano Letters, 2013, 13(7):3093-3100.
[5] Frey-Wyssling A. The fine structure of cellulose microfibrils[J]. Science, 1954, 119(3081):80-82.
[6] Manley R S J. Fine structure of native cellulose microfibrils[J]. Nature, 1964, 204(4964):1155-1157.
[7] Fengel D, Wegener G. Wood:Chemistry, ultrastructure, reactions[M]. Germany:Walter de Gruyter, 1983.
[8] Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized cellulose nanofibers[J]. Nanoscale, 2011, 3(1):71-85
[9] Habibi Y, Lucia L A, Rojas O J. Cellulose nanocrystals:Chemistry, self-assembly, and applications[J]. Chemical Reviews, 2010, 110(6):3479-3500.
[10] Dieter K, Friederike K, Sebastian M, et al. Nanocellulose:A new family of nature-based materials[J]. Angewandte Chemie International Edition, 2011, 50:5438-5466.
[11] Liimatainen H, Ezekiel N, Sliz R, et al. High-strength nanocellulose-talc hybrid barrier films[J]. ACS Applied Materials & Interfaces, 2013, 5(24):13412-13418.
[12] Michael T P, András V, John D, et al. Development of the metrology and imaging of cellulose nanocrystals[J]. Measurement Science and Technology, 2011, 22(2):024005.
[13] Turbar A F, Snyder F W, Sandberg K R. Microfibrillated cellulose, a new cellulose product:Properties, uses, and commercial potential[C]. Shelton:ITT Rayonier Inc, 1983.
[14] Wang Q Q, Zhu J Y, Considine J M. Strong and optically transparent films prepared using cellulosic solid residue (CSR) recovered from cellulose nanocrystals (CNC) production waste stream[J]. ACS Applied Materials & Interfaces, 2013, 5(7):2527-2534.
[15] Chen J, Akin M, Yang L, et al. Transparent eletrode and magnetic permalloy made from novel nanopaper[J]. ACS Applied Materials & Interfaces, 2016, 8(40):27081-27090.
[16] Tobjörk D, Österbacka R. Paper electronics[J]. Advanced Materials, 2011, 23(17):1935-1961.
[17] Nogi M, Iwamoto S, Nakagaito A N, et al. Optically transparent nanofiber paper[J]. Advanced Materials, 2009, 21(16):1595-1598.
[18] Wang Q, Zhu J, Considine J M. Strong and optically transparent films prepared using cellulosic solid residue recovered from cellulose nanocrystals production waste stream[J]. ACS Applied Materials & Interfaces, 2013, 5(7):2527-2534.
[19] Fukuzumi H, Saito T, Iwata T, et al. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation[J]. Biomacromolecules, 2009, 10(1):162-165.
[20] Cheng S, Zhang Y, Cha R, et al. Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties[J]. Nanoscale, 2016, 8(2):973-978.
[21] Yang H, Tejado A, Alam N, et al. Films prepared from electrosterically stabilized nanocrystalline cellulose[J]. Langmuir, 2012, 28(20):7834-7842.
[22] Jin J, Lee D, Im H, et al. Chitin nanofiber transparent paper for flexible green electronics[J]. Advanced Materials, 2016, 28(26):5169-5175.
[23] Fang Z, Zhu H, Bao W, et al. Highly transparent paper with tunable haze for green electronics[J]. Energy Environmental Science, 2014, 7(10):3313-3319.
[24] Ha D, Fang Z, Hu L, et al. Paper-based antireflection coatings for photovoltaics[J]. Advanced Energy Materials, 2014, 4(9):1301804.
[25] Revol J F, Bradford H, Giasson J, et al. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension[J]. International Journal of Biological Macromolecules, 1992, 14(3):170-172.
[26] von Freymann G, Kitaev V, Lotsch B V, et al. Bottom-up assembly of photonic crystals[J]. Chemical Society Reviews, 2013, 42(7):2528-2554.
[27] Giese M, Blusch L K, Khan M K, et al. Responsive mesoporous photonic cellulose films by supramolecular contemplating[J]. Angewandte Chemie International Edition, 2014, 53(34):8880-8884.
[28] Huang J, Zhu H, Chen Y, et al. Highly transparent and flexible nanopaper transistors[J]. ACS Nano, 2013, 7(3):2106-2113.
[29] Sehaqui H, Zhou Q, Ikkala O, et al. Strong and tough cellulose nanopaper with high specific surface area and porosity[J]. Biomacromolecules, 2011, 12(10):3638-3644.
[30] Zhu H, Zhu S, Jia Z, et al. Anomalous scaling law of strength and toughness of cellulose nanopaper[J]. Proceedings of the National Academy of Sciences, 2015, 112(29):8971-8976.
[31] Henriksson M, Berglund L A, Isaksson P, et al. Cellulose nanopaper structures of high toughness[J]. Biomacromolecules, 2008, 9(6):1579-1585.
[32] Wu C N, Saito T, Fujisawa S, et al. Ultrastrong and high gasbarrier nanocellulose/clay-layered composites[J]. Biomacromolecules, 2012, 13(6):1927-1932.
[33] Sharma P R, Varma A J. Thermal stability of cellulose and their nanoparticles:Effect of incremental increases in carboxyl and aldehyde groups[J]. Carbohydrate Polymers, 2014, 114(19):339-343.
[34] Fukuzumi H, Saito T, Okita Y, et al. Thermal Stabilization of TEMPO-Oxidized Cellulose[J]. Polymer Degradation and Stability, 2010, 95(9):1502-1508.
[35] Hsieh M C, Kim C, Nogi M, et al. Electrically conductive lines on cellulose nanopaper for flexible electrical devices[J]. Nanoscale, 2013, 5(19):9289-9295.
[36] Nogi M, Kim C, Sugahara T, et al. High thermal stability of optical transparency in cellulose nanofiber paper[J]. Applied Physics Letters, 2013, 102(18):181911.
[37] Yano H, Sugiyama J, Nakagaito A N, et al. Optically transparent composites reinforced with networks of bacterial nanofibers[J]. Advanced Materials, 2005, 17(2):153-155.
[38] Zhu H, Xiao Z, Liu D, et al. Biodegradable transparent substrates for flexible organic-light-emitting diodes[J]. Energy & Environmental Science, 2013, 6(7):2105-2111.
[39] Sirviö P, Backfolk K, Maldzius R, et al. Dependence of paper surface and volume resistivity on electric field strength[J]. Journal of Imaging Science and Technology, 2008, 52(3):30501-1-30501-8.
[40] Murphy E J. The dependence of the conductivity of cellulose, silk and wool on their water content[J]. Journal of Physics and Chemistry of Solids, 1960, 16(1/2):115-122.
[41] Murphy E J. General atomic and molecular electronic structure system[J]. The Journal of Physical Chemistry, 1960, 15, 66-71.
[42] Fahmy T Y A, Mobarak F, El-Meligy M G. Processes Controlling the thermal regime of saltmarsh channel beds[J]. Wood Science and Technology, 2008, 42(3):691-698.
[43] Inui T, Koga H, Nogi M, et al. Miniaturized flexible antenna printed on a high dielectric constant nanopaper composite[J]. Advanced Materials, 2015, 27(6):1112-1116.
[44] Syverud K, Stenius P. Strength and barrier properties of MFC films[J]. Cellulose, 2009, 16(1):75-85.
[45] Fukuzumi H, Saito T, Iwata T, et al. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation[J]. Biomacromolecules, 2009, 10(1):162-165.
[46] Jiang Y, Song Y, Miao M, et al. Transparent nanocellulose hybrid films functionalized with ZnO nanostructures for UVblocking[J]. Journal of Materials Chemistry C, 2015, 3(26):6717-6724.
[47] Österberg M, Vartiainen J, Lucenius J, et al. A fast method to produce strong NFC films as a platform for barrier and functional materials[J]. ACS Applied Materials & Interfaces, 2013, 5(11):4640-4647.
[48] Bacon, W S. General system theory[J]. Popular Science, 1968, 124-125.
[49] Sun J, Wan Q, Lu A, et al. Low-voltage electric-double-layer paper transistors gated by microporous SiO2 processed at room temperature[J]. Applied Physics Letters, 2009, 95(22):222108.
[50] Lim W, Douglas E A, Kim S H, et al. High mobility InGaZnO4 thin-film transistors on paper[J]. Applied Physics Letters, 2009, 94(7):072103.
[51] Larsson O, Said E, Berggren M, et al. Insulator polarization mechanisms in polyelectrolyte-gated organic field-effect transistors[J]. Advanced Functional Materials, 2009, 19(20):3334-3341.
[52] Fujisaki Y, Koga H, Nakajima Y, et al. Transparent nanopaper-based flexible organic thin-film transistor array[J]. Advanced Functional Materials, 2014, 24(12):1657-1663.
[53] Bao W, Fang Z, Wan J, et al. Aqueous gating of van der Waals materials on bilayer nanopaper[J]. ACS Nano, 2014, 8(10):10606-10612.
[54] Barr M C, Rowehl J A, Lunt R R, et al. Direct monolithic integration of organic photovoltaic circuits on unmodified paper[J]. Advanced Materials, 2011, 23(31):3500-3505.
[55] Águas H, Mateus T, Vicente A, et al. Thin film silicon photovoltaic cells on paper for flexible indoor applications[J]. Advanced functional materials, 2015, 25(23):3592-3598.
[56] Gao Y, Choi S. Stepping toward self-powered papertronics:Integrating biobatteries into a single sheet of paper[J]. Advanced Materials Technologies, 2017, 2(1):1600194.
[57] Andersson P, Nilsson D, Svensson P O, et al. Active matrix displays based on all-organic electrochemical smart pixels printed on paper[J]. Advanced Materials, 2002, 14(20):1460-1464.
[58] Lamprecht B, Thünauer R, Ostermann M, et al. Organic photodiodes on newspaper[J]. Physica Status Solidi A, 2005, 202(5):R50-R52.
[59] Legnani C, Vilani C, Calil V L, et al. Bacterial cellulose membrane as flexible substrate for organic light emitting devices[J]. Thin Solid Films, 2008, 517(3):1016-1020.
[60] Nogi M, Yano H. Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry[J]. Advanced Materials, 2008, 20(10):1849-1852.
[61] Purandare S, Gomez E F, Steckl A J. High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films[J]. Nanotechnology, 2014, 25(9):0940-12.
[62] Zhu H, Xiao Z, Liu D, et al. Biodegradable transparent substrates for flexible organic-light-emitting diodes[J]. Energy & Environmental Science, 2013, 6(7):2105-2111.
文章导航

/