科技引领

仿生新材料的应用及展望

  • 王博 ,
  • 张雷鹏 ,
  • 徐高平 ,
  • 李晓白 ,
  • 李垚
展开
  • 哈尔滨工业大学复合材料与结构研究所, 哈尔滨 150000
王博,博士研究生,研究方向为有机电致变色材料及导电聚合物仿生材料,电子信箱:wb641368602@163.com

收稿日期: 2019-05-20

  修回日期: 2019-06-10

  网络出版日期: 2019-06-24

基金资助

国家自然科学基金项目(51572058,51761135123,51702068)

Application and prospect of new bionic materials

  • WANG Bo ,
  • ZHANG Leipeng ,
  • XU Gaoping ,
  • LI Xiaobai ,
  • LI Yao
Expand
  • Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150000, China

Received date: 2019-05-20

  Revised date: 2019-06-10

  Online published: 2019-06-24

摘要

仿生材料的最大特点是可设计性,运用仿生的手段可以将自然界生物材料的结构及功能赋予人工制造的智能化材料。综述了目前仿生新材料在信息通信、建筑行业、生物医疗、节能减排等领域的应用,分析了仿生材料在未来的应用方向,并对仿生材料的前景提出了展望。

本文引用格式

王博 , 张雷鹏 , 徐高平 , 李晓白 , 李垚 . 仿生新材料的应用及展望[J]. 科技导报, 2019 , 37(12) : 74 -78 . DOI: 10.3981/j.issn.1000-7857.2019.12.013

Abstract

The most important characteristics of the bionic materials are the ability to be desined. The structure and the function of the biological materials in nature can be obtained by artificial intelligent materials by means of bionics. This paper summarizes the application of the bionic new materials in the fields of information communication, building industry, biological medicine, energy conservation and emission reduction, and analyzes the application direction of the bionic materials in the future, as well assome prospective development of the bionic materials.

参考文献

[1] 江雷, 冯琳. 仿生智能纳米界面材料[M]. 北京:化学工业出版社, 2016.
[2] 路甬祥. 仿生学的意义与发展[J]. 科学国人, 2004(4):22-24.
[3] 黄尊文. 勾画未来战争的脸谱[J]. 现代军事, 2004(1):60-61.
[4] Rana D, Matsuura T. Surface modifications for antifouling membranes[J]. Chemical Reviews, 2010, 110(4):2448-2471.
[5] Dalsin J L, Messersmith P B. Bioinspired antifouling polymers[J]. Materials Today, 2005, 8(9):38-46.
[6] Mi L, Jiang S. Integrated antimicrobial and nonfouling zwitterionic polymers[J]. Angewandte Chemie International Edition, 2014, 53(7):1746-1754.
[7] Zhang Z J, Chen J X. Effects of changes in the structural parameters of bionic straw sandwich concrete beetle elytron plates on their mechanical and thermal insulation properties[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90(2):217-225.
[8] Tang J S. Large-area high-performance flexible pressure sensor with carbon nanotube active matrix for electronic skin[J]. Nano Letters, 2018, 18(3):2054-2059.
[9] Jiang S, Cao Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications[J]. Advanced Materials, 2010, 22(9):920-932.
[10] Chen S, Li L, Zhao C, et al. Surface hydration:Principles and applications toward low-fouling/nonfouling biomaterials[J]. Polymer, 2010, 51(23):5283-5293.
[11] Shi C, Yan B, Xie L, et al. Long-range hydrophilic attraction between water and polyelectrolyte surfaces in oil[J]. Angewandte Chemie International Edition, 2016, 55(48):15017-15021.
[12] He K, Duan H, Chen G Y, et al. Cleaning of oil fouling with water enabled by zwitterionic polyelectrolyte coatings:Overcoming the imperative challenge of oil-water separation membranes[J]. ACS Nano, 2015, 9(9):9188-9198.
[13] Kirschner C M, Brennan A B. Bio-inspired antifouling strategies[J]. Annual Review of Materials Research, 2012, 42(1):211-229.
[14] Wong T S. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365):443-447.
[15] Zhou X, Xie Q. Inhibition of marine biofouling by use of degradable and hydrolyzable silyl acrylate copolymer[J]. Industrial & Engineering Chemistry Research, 2015, 54(39):9559-9565.
[16] 刘宝生. 鲨鱼皮仿生结构应用及制造技术综述[J]. 塑性工程学报, 2014, 4(21):56-62.
[17] Xue L J. Hybrid surface patterns mimicking the design of the adhesive toe pad of tree frog[J]. ACS Nano, 2017, 11(10):9711-9719.
[18] Wei G W. Self-powered hybrid flexible nanogenerator and its application in bionic micro aerial vehicles[J]. Nano Energy, 2018, 9(54):10-16.
[19] Sudeep J, Manu S. Bacterial nanobionics via 3D printing[J]. Nano Letters, 2018, 18(12):7448-7456.
文章导航

/