综述

中国遗传改变小鼠研发与市场在近20年的发展与变化

  • 马宁 ,
  • 李正花 ,
  • 史季 ,
  • 乔瑜 ,
  • 王大勇 ,
  • 高旭
展开
  • 1. 哈尔滨医科大学基础医学院, 哈尔滨 150081;
    2. 上海九葫禾生物科技有限公司, 上海 201203;
    3. 黑龙江省遗传改变模式动物重点实验室, 哈尔滨 150081;
    4. 黑龙江省基础医学研究所, 哈尔滨 150081;
    5. 北方转化医学研究与合作中心, 哈尔滨 150081
马宁,副教授,研究方向为遗传改变小鼠研发与应用,电子信箱:maning@hrbmu.edu.cn

收稿日期: 2018-11-20

  修回日期: 2019-03-15

  网络出版日期: 2019-07-24

基金资助

哈尔滨市科技局创新人才项目(2016RAYBJ006);黑龙江省博士后科研启动基金项目(LBH-Q15108);黑龙江省自然科学基金项目(H2018006);黑龙江省高等教育教学改革研究项目(SJGY20170419);黑龙江省重大研发项目(GA16C105);国家自然科学基金项目(81570534,81773165)

Development and change of research and market in the field of genetically modified mouse in China in recent 20 years

  • MA Ning ,
  • LI Zhenghua ,
  • SHI Ji ,
  • QIAO Yu ,
  • WANG Dayong ,
  • GAO Xu
Expand
  • 1. College of Basic Medicine, Harbin Medical University, Harbin 150081, China;
    2. Shanghai Jiu Hu He Biology Science and Technology Co., Ltd., Shanghai 201203, China;
    3. Key Laboratory of Genetically Modifed animals of Heilongjiang Province, Harbin 150081, China;
    4. Basic Medical Institute of Heilongjiang Medical Science Academy, Harbin 150081, China;
    5. Translational Medicine Center of Northern China, Harbin 150081, China

Received date: 2018-11-20

  Revised date: 2019-03-15

  Online published: 2019-07-24

摘要

遗传改变小鼠是基因组经过“修饰”或“改造”的实验用小鼠,作为实验动物的重要组成在中国近20年里得到了飞速发展,被先后应用于生命科学与医学的基础研究、抗体药物评价与抗体药物研发等转化应用项目中。介绍了近20年中国遗传改变小鼠领域的国家投入、机构建设、市场发展、学术交流、工作重点及成果积累等方面的发展与变化。

本文引用格式

马宁 , 李正花 , 史季 , 乔瑜 , 王大勇 , 高旭 . 中国遗传改变小鼠研发与市场在近20年的发展与变化[J]. 科技导报, 2019 , 37(14) : 51 -58 . DOI: 10.3981/j.issn.1000-7857.2019.14.007

Abstract

Experimental zoology in China began to develop in the early 1980s. With the rapid development of China's reform and opening up, China's experimental animal science and industry have entered the regular development stage. Genetically modified mice, as an important part of experimental animals, have developed rapidly in China in the past two decades, and have been successively applied in life science and basic medical research, antibody drug evaluation, antibody drug research development and other transformation applications. This review is to expound the development situation of genetically modified mice through the classified statistics and research methods on the six aspects including national investment, institution construction, market development, academic exchange, work focus and achievement accumulation. Finally, this review summarizes the standard establishment process and research development of genetically modified mice in China in the past two decades.

参考文献

[1] Seruggia D, Montoliu L. The new CRISPR-Cas system:RNAguided genome engineering to efficiently produce any desired genetic alteration in animals[J]. Transgenic Research, 2014, 23(5):707-716.
[2] Gao X. Model animals and their applications[J]. Science China Life Sciences, 2015, 58(4):319-320
[3] Genetically modified mouse[EB/OL].[2018-11-17]. https://en.m.wikipedia.org/wiki/Genetically_modified_mouse.
[4] 傅继梁. 基因工程小鼠[M]. 上海:上海科学技术出版社, 2006.
[5] Chen Y, Zheng Y, Gao Y, et al. Single-cell RNA-seq uncovers dynamic processes and critical regulators in mouse spermatogenesis[J]. Cell Research, 2018, 28(9):879-896.
[6] Xian L, Hou S, Huang Z, et al. Liver-specific deletion of Ppp2cα enhances glucose metabolism and insulin sensitivity[J]. Aging (Albany NY), 2015, 7(4):223-232.
[7] 胡以平, 曾溢滔. 后基因组时代的基因工程小鼠[J]. 第二军医大学学报, 2003, 24(2):117-119.
[8] Mike M. Cancer research with a human touch[J]. Nature, 2018, 556(7700):259-261.
[9] 王志明. 转基因小鼠技术在全人源抗体药物研发中的应用[J]. 中国新药杂志, 2016, 25(22):2596-2602.
[10] 秦川. 中国实验动物学科发展40年[J]. 科技导报, 2017, 35(24):20-26.
[11] 汪兆琦, 章静波. 转基因小鼠的研究及其遗传学意义[J]. 国外医学(遗传学分册), 1987(4):173-177.
[12] 邓永鸿. 用小鼠生产人的单克隆抗体吗[J]. 生物技术通报, 1990(3):16-17.
[13] 山村研一, 陈泊(译). 用转基因小鼠作人类疾病的动物模型[J]. 国外医学(遗传学分册), 1989(5):263-265.
[14] 国家遗传工程小鼠资源库[EB/OL].[2018-11-17]. http://www.nrcmm.cn/.
[15] 人类重大疾病小鼠模型的建立与应用[EB/OL].[2018-11-17]. http://www.most.gov.cn/tztg/200610/t20061025_37033.htm.
[16] 重大疾病动物模型和实验动物资源的标准化及评价体系的建立[EB/OL].[2018-11-17]. http://www.most.gov.cn/tztg/201009/t20100910_79351.htm.
[17] 重大疾病动物模型和实验动物资源的标准化及评价体系的建立[EB/OL].[2018-11-17]. https://www.lascn.net/Item/23135.aspx.
[18] 薛丽香, 张凤珠, 孙瑞娟, 等. 工欲善其事, 必先利其器-NSFC疾病动物模型项目5年资助回顾[J]. 中国科学:生命科学, 2015, 45(12):1264-1268.
[19] 江虎军, 冯锋, 董尔丹. 模式动物与人类疾病的动物模型[J]. 生命科学, 2011, 23(3):234-238.
[20] 国家遗传工程小鼠资源库提升项目[EB/OL].[2018-11-17].http://news.nju.edu.cn/show_article_1_36056.
[21] 南京大学模式动物研究所[EB/OL].[2018-11-17]. http://www.nicemice.cn/.
[22] 上海南方模式生物研究中心[EB/OL].[2018-11-17]. http://biomodel.biogo.net/.
[23] 上海南方模式生物科技股份有限公司[EB/OL].[2018-11-17]. https://www.modelorg.com/.
[24] 百奥赛图基因生物技术有限公司[EB/OL].[2018-11-17]. http://www.bbctg.com.cn/index/index/index.html.
[25] 赛业(苏州)生物科技有限公司[EB/OL].[2018-11-17]. https://www.cyagen.com/cn/zh-cn/.
[26] 日本熊本大学动物资源研究支援中心[EB/OL].[2018-11-17]. http://card.medic. kumamoto-u.ac.jp/index.html.
[27] 亚洲突变小鼠资源联盟[EB/OL].[2018-11-17]. http://ammra.info.
[28] 日本理化研究所(筑波)生物资源研究中心[EB/OL].[2018-11-17]. http://ja.brc.riken.jp/.
[29] 中日小鼠暑期训练营[EB/OL].[2018-11-17]. http://summer2018.nicemice.cn/index.php.
[30] 模式动物与重大疾病动物模型研究与应用研讨会[EB/OL].[2018-11-17]. http://meeting.bioon.com/2018ModelOrganism.
[31] 中国实验动物发展与合作论坛[EB/OL].[2018-11-17]. https://www.lascn.net/Item/70689.aspx.
[32] ‘一带一路’遗传工程小鼠应用和表型分析学术研讨班[EB/OL].[2018-11-17]. http://www.nicemice.cn/index.php?m=News&a=show&id=163.
[33] 重大疾病动物模型专题研讨会[EB/OL].[2018-11-17]. http://www.most.gov.cn/kjbgz/201211/t20121115_97930.htm.
[34] 岳凤鸣, 庞晓静, 高福禄, 等. db/db自发性糖尿病小鼠睾丸生殖细胞凋亡及相关基因Bcl-2和Bax表达[J]. 解剖科学进展, 2001, 7(2):106-110.
[35] 雷德亮, 廖丽民, 潘爱华, 等. 雌激素对app/ps1双转基因阿尔茨海默病模型小鼠海马老年斑形成的抑制作用[J]. 解剖学杂志, 2005, 28(1):5-8.
[36] 马宁, 高旭. 转基因动物在microRNA研究中的应用[J]. 生物化学与生物物理进展, 2009, 36(9):1095-1100.
[37] 高翔. 小鼠基因功能研究及疾病模型系列专题(三)——条件型基因剔除小鼠表型鉴定的基本方法[J]. 中国细胞生物学学报, 2010, 32(3):357-358.
[38] 高旭, 吕延杰, 单宏丽, 等. 微小核苷酸转基因小鼠导致心脏功能发生改变[J]. 哈尔滨医科大学学报, 2010, 44(2):198-199.
[39] Lu Y, Zhang Y, Wang N, et al. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation[J]. Circulation, 2010, 122(23):2378-2387.
[40] Zhu M, Liu J, Xiao J, et al. Lnc-mg is a long non-coding RNA that promotes myogenesis[J]. Nature Communications, 2017, 8:14718.
[41] Chen J, Du Y, He X, et al. A convenient Cas9-based conditional knockout strategy for simultaneously targeting multiple genes in mouse[J]. Scientific Reports, 2017, 7(1):517.
[42] Zhao G, Li Z, Araki K, et al. Inconsistency between hepatic expression and serum concentration of transthyretin in mice humanized at the transthyretin locus[J]. Genes Cells, 2008, 13(12):1257-1268.
[43] 人源化动物[EB/OL].[2018-11-17]. https://en.wikipedia.org/wiki/Humanized_mouse.
[44] Devoy A, Bunton-Stasyshyn R K, Tybulewicz V L, et al. Genomically humanized mice:Technologies and promises[J]. Nature Reviews Genetics, 2011, 13(1):14-20.
[45] PD-1人源化小鼠[EB/OL].[2018-11-17]. https://www.modelorg.com/model-repository/popular-mouse-strain/pd-1-humanized-mice.html.
[46] PD-1人源化小鼠[EB/OL].[2018-11-17]. http://www.bbctg.com.cn/index/article/index/aid/53.html.
[47] Ito M, Hiramatsu H, Kobayashi K, et al. NOD/SCID/gamma(c) (null) mouse:An excellent recipient mouse model for engraftment of human cells[J]. Blood, 2002, 100(9):3175-3182.
[48] Shultz L D, Lyons B L, Burzenski L M, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells[J]. The Journal of Immunology, 2005, 174(10):6477-6489.
[49] 孙志伟, 王双, 陈惠鹏. 转基因小鼠在抗体药物研发中的应用[J]. 生物产业技术, 2012(6):21-25.
[50] H2L2 Mouse[EB/OL].[2018-11-17]. http://www.harbourbiomed.com/cn/H2L2.html.
[51] OminiMouse[EB/OL].[2018-11-17]. https://www.omniab.com/.
[52] 抗体转基因小鼠[EB/OL].[2018-11-17]. https://bio.nikkeibp.co.jp/atcl/wm/column/18/11/15/00275/?ST=print.
[53] 薛丽香, 霍名赫, 闫章才, 等. 建设动物模型平台, 推动医学科学发展——科学基金"疾病动物模型"项目介绍与资助分析[J]. 中国科学基金, 2013(2):79-82.
[54] B轮融资8500万美元加速创新产品线研发[EB/OL].[2018-11-17]. http://www.harbourbiomed.com/cn/newsContent.html# 81.
[55] 模式动物资源信息平台[EB/OL].[2018-11-17]. http://www. nrcmm.cn/.
[56] 中国遗传工程大小鼠资源共享联盟[EB/OL].[2018-11-17]. http://cmsr.nrcmm.cn/.
[57] "模式动物应用与产业化基地"项目[EB/OL].[2018-11-17]. http://www.sohu.com/a/229616918_227596.
[58] "中国模式动物基地"项目[EB/OL].[2018-11-17]. http://www.sohu.com/a/252665929_227596.
[59] Meehan T F, Conte N, West D B, et al. Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium[J]. Nature Genetics, 2017, 49(8):1231-1238.
[60] 模式动物表型与遗传研究国家重大科技基础设施[EB/OL].[2018-11-17]. http://gjss.ndrc.gov.cn/gzdtx/201604/t20160429_800647.html.
[61] 模式动物表型与遗传研究国家重大科技基础设施[EB/OL].[2018-11-17]. http://mam.cau.edu.cn/.
[62] Qu L, Ma Q, Zhou Z, et al. A profile of native integration sites used by φC31 integrase in the bovine genome[J]. Journal of Genetics and Genomics, 2012, 39(5):217-224.
[63] 张彩勤, 赵亚, 谭邓旭, 等. 基因工程小鼠制备和保种、育种技术研究[J]. 实验动物科学, 2016, 33(4):52-57.
[64] 马元元, 孔申申, 陶迎红, 等. 基因工程小鼠的饲养管理[J]. 实验动物科学, 2015, 32(1):41-44.
[65] 高翔. 小鼠基因功能研究及疾病模型系列专题(二)——基因工程小鼠的品系管理及基因型鉴定[J]. 中国细胞生物学学报, 2010, 32(2):193-194.
[66] 遺伝子組換え生物等に関する講習会[EB/OL].[2018-11-17]. https://gtc.egtc.jp/2018kumikae/.
文章导航

/