研究论文

结构性黄土扭剪特性及联合强度破坏应力修正算法

  • 骆建文 ,
  • 李荣建 ,
  • 王治军 ,
  • 朱桥川 ,
  • 杜志伟 ,
  • 闫蕊
展开
  • 1. 西安长庆科技工程有限责任公司, 西安 710021;
    2. 西安理工大学岩土工程研究所, 西安 710048
骆建文,高级工程师,研究方向为工程地质及岩土工程勘察,电子信箱:1879878040@qq.com

收稿日期: 2018-09-13

  修回日期: 2019-03-31

  网络出版日期: 2019-07-24

基金资助

陕西省黄土力学与工程重点实验室项目(14JS064);西安长庆科技工程有限责任公司项目(CTEC14Z-KY-013)

Torsional shear property and algorithm of failure stress in joint strength of structural loess

  • LUO Jianwen ,
  • LI Rongjian ,
  • WANG Zhijun ,
  • ZHU Qiaochuan ,
  • DU Zhiwei ,
  • YAN Rui
Expand
  • 1. Xi'an Changqing Technology Engineering CO., LTD., Xi'an 710021, China;
    2. Institute of Geotechnical Engineering, Xi'an University of Technology, Xi'an 710048, China

Received date: 2018-09-13

  Revised date: 2019-03-31

  Online published: 2019-07-24

摘要

中国西北地区存在大量的陡峭黄土边坡,降雨或扰动均会导致黄土的结构性大大降低,可能导致滑坡的产生。通过新型扭剪强度测试仪分析了结构性黄土在扭剪试验过程中的破坏特征,基于扭剪试验结果对可以综合考虑结构性黄土抗拉及抗剪特性的联合强度公式进行了验证,并基于联合强度研究了土体破坏应力的修正算法。结果表明,原状黄土、重塑黄土的破坏扭矩随含水率增大而逐渐减小,且原状黄土的破坏扭矩大于重塑黄土;扭剪强度试验中破坏应力圆与联合强度破坏线相切,验证了联合强度公式具有合理的试验基础;基于联合强度提出的土体破坏应力修正算法,可为黄土边坡灾害评价提供更加切合实际的强度理论。

本文引用格式

骆建文 , 李荣建 , 王治军 , 朱桥川 , 杜志伟 , 闫蕊 . 结构性黄土扭剪特性及联合强度破坏应力修正算法[J]. 科技导报, 2019 , 37(14) : 86 -92 . DOI: 10.3981/j.issn.1000-7857.2019.14.011

Abstract

There are a large number of steep loess slopes in the northwestern region of China. The loess structure would be greatly reduced by rainfall or disturbance, which may lead to the occurrence of landslides. Therefore, it is of great theoretical significance to carry out the researches on torsional shear strength test and tensile strength test of structural loess. In this paper, firstly, the failure characteristics of structural loess are analyzed using a newly developed test device for torsion shear test. Secondly, based on the results of torsional shear test, the joint strength formula which can comprehensively consider the tensile and shear properties of structural loess is validated. Finally, an algorithm of calculating failure stress is derived based on the joint strength. The results show that the failure torques of intact loess and remolded loess gradually decrease with the increase of water content, and the failure torque of intact loess is greater than that of remolded loess. In the torsional shear test, the failure stress circle is tangent to the joint strength failure line, which verifies that the joint strength formula has a reasonable experimental basis. The joint strength and the derived algorithm of calculating failure stress can provide a more realistic way for the evaluation of loess slope disasters.

参考文献

[1] 孔令伟, 陈正汉. 特殊土与边坡技术发展综述[J]. 土木工程学报, 2012, 45(5):141-161. Kong Lingwei, Chen Zhenghan. Advancement in the techniques for special soils and slopes[J]. China Civil Engineering Journal, 2012, 45(5):141-161.
[2] 陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2):201-272. Chen Zhenghan. On basic theories of unsaturated soils and special soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2):201-272.
[3] 李荣建, 郑文, 刘军定, 等. 考虑初始结构性参数的结构性黄土边坡稳定性评价[J]. 岩土力学, 2014, 35(1):143-150. Li Rongjian, Zheng Wen, Liu Junding, et al. Evaluation of stability of structural loess slope considering initial structural parameters[J]. Rock and Soil Mechanics, 2014, 35(1):143-150.
[4] Burland J B. On the compressibility and shear strength of natural clays[J]. Geotechnique, 1990, 40(3):329-378.
[5] Callisto L, Calabresi G. Mechanical behaviour of a natural soft clay[J]. Geotechnique, 1998, 48(4):495-513.
[6] Desai C S, Toth J. Disturbed state constitutive modeling based on tress-strain and nondestructive behavior[J]. International Journal of Solids and Structures, 1996, 33(11):1619-1650.
[7] 沈珠江, 陈铁林. 岩土破损力学:基本概念,目标和任务[C]//中国岩石力学与工程学会第七届学术大会论文集. 北京:中国科学技术出版社, 2002:9-12. Shen Zhujiang, Chen Tielin. The rock damage mechanics:basic concept, purpose and task[C]//Proceedings of the Seventh Conference of the Chinese Society for Rock Mechanics and Engineering. Beijing:Chinese Science and Technology Press, 2002:9-12.
[8] Liu M D, Carter J P. Volumetric deformation of natural clays[J]. International Journal of Geomechanics, 2003, 2(3):236-252.
[9] 谢定义, 齐吉林. 土的结构性及其定量化参数研究的新途径[J]. 岩土工程学报, 1999, 21(6):651-656. Xie Dingyi, Qi Jilin. Soil structure characteristics and new approach in research on its quantitative parameter[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6):651-656.
[10] 骆亚生, 谢定义, 邵生俊. 复杂应力状态下的土结构性参数[J]. 岩石力学与工程学报, 2004, 23(24):4248-4251. Luo Yasheng, Xie Dingyi, Shao Shengjun. Structural parameter of soil under complex stress conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(24):4248-4251.
[11] 夏旺民. 黄土弹塑性损伤本构模型及工程应用研究[D]. 西安:西安理工大学, 2005. Xia Wangmin. The elasto-plastic damage constitutive model of loess and its engineering application[D]. Xi'an:Xi'an University of Technology, 2005.
[12] 袁志辉, 倪万魁, 唐春, 等. 干湿循环下黄土强度衰减与结构强度[J]. 岩土力学, 2017, 38(6):1-10. Yuan Zhihui, Ni Wankui, Tang Chun, et al. Structure strength and strength attenuation value of loess under wetting-drying cycle[J]. Rock and Soil Mechanics, 2017, 38(6):1-10.
[13] 陈昌禄, 邵生俊, 罗爱忠, 等. 结构性对原状黄土强度影响规律的真三轴试验研究[J]. 岩土工程学报, 2013, 35(12):2322-2327. Chen Changlu, Shao Shengjun, Luo Aizhong, et al. True triaxial tests on structural effects on strength of intact loess[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12):2322-2327.
[14] Lambe T W. The structure of compacted clay[J]. Journal of the Soil Mechanics and Foundations Division, 1958, 84(2):1-34.
[15] Seed A B, Chen C K. Structure and strenth characteristics of compacted clay and evolution during consolidation[J]. Canadian Geotechnical Journal, 1984(21):21-25.
[16] Li R J, Liu J D, Yan R, et al. Characteristic of structural loess strength and its preliminary framework of joint strength formula[J]. Water Science and Engineering, 2014, 7(3):319-330.
[17] 李荣建, 刘军定, 李海涛, 等. 一种基于拉压扭剪耦合的应力路径三轴仪:201310064907X[P]. 2013-02-28. Li Rongjian, Liu Junding, Li Haitao, et al. A device of stress path triaxial based on tension-compression-torsion-shear coupling:201310064907X[P]. 2013-02-28.
文章导航

/