专题:体系工程

协作感知门限自适应优化

  • 孙昊祥 ,
  • 陈长兴 ,
  • 迟文升 ,
  • 凌云飞
展开
  • 1. 空军工程大学基础部, 西安 710051;
    2. 空军工程大学装备管理与无人机工程学院, 西安 710051
孙昊祥,硕士研究生,研究方向为认知无线电频谱感知、频谱管理,电子信箱:593264062@qq.com

收稿日期: 2019-01-27

  修回日期: 2019-04-22

  网络出版日期: 2019-09-05

基金资助

陕西省自然科学基础研究计划项目(2017JM6071)

Adaptive optimization of collaborative sensing threshold using genetic algorithm

  • SUN Haoxiang ,
  • CHEN Changxing ,
  • CHI Wensheng ,
  • LING Yunfei
Expand
  • 1. Basic Department, Air Force Engineering University, Xi'an 710051, China;
    2. Equipment Management and UAV Engineering College, Air Force Engineering University, Xi'an 710051, China

Received date: 2019-01-27

  Revised date: 2019-04-22

  Online published: 2019-09-05

摘要

在频谱感知过程中,采用协作感知的方式对空间内多个节点的感知结果进行融合,可以消除路径阴影和深度衰落情况的影响,有效提高结果的准确性和可靠性。基于加权融合的协作判决准则,为了保证融合结果的检测概率和虚警概率达到标准,需要使每个节点的感知结果均达到相应的标准。因此提出通过对每个感知节点设定合适的感知门限进行优化。首先对各感知节点的进行分析,可以得到每个节点在检测概率和虚警概率一定的条件下,感知门限与节点权值的关系,其次通过遗传算法对权值的优化实现权值优化——感知门限优化的自适应优化过程。最后通过仿真验证该方法可以高效准确地实现感知门限的自适应优化,从而保证了协作频谱感知的实际性能。

本文引用格式

孙昊祥 , 陈长兴 , 迟文升 , 凌云飞 . 协作感知门限自适应优化[J]. 科技导报, 2019 , 37(13) : 76 -82 . DOI: 10.3981/j.issn.1000-7857.2019.13.011

Abstract

In the spectrum sensing process, cooperative sensing method is to fuse the sensing results of multiple nodes in space to eliminate the influence of path shadow and deep fading and effectively improve accuracy and reliability of results. In order to ensure that the detection probability and the false alarm probability of the fusion result reach the standard, the cooperative decision criterion based on weighted fusion needs to make the perceptual result of each node reach the corresponding standard. Therefore, this paper proposes a method to set an appropriate perceptual threshold for each perceptual node to achieve optimization. Firstly, the analysis of each sensory node can obtain the relationship between the threshold and node weight under the condition of fixed detection probability and false alarm probability. Secondly, using the genetic algorithm, the weight is optimized to realize the weight optimization, the adaptive optimization process of perceptual threshold optimization. Finally, simulation results show that the proposed method can efficiently and accurately realize adaptive optimization of sensing threshold, thus ensuring the actual performance of cooperative spectrum sensing.

参考文献

[1] Haykin S, Thomson D J, Reed J H. Spectrum sensing for cognitive radio[J]. Proceedings of the IEEE, 2009, 97(5):849-877.
[2] 孙牧歌, 孙学宏, 张旋, 等. 基于能量检测的增强型自适应门限优化算法[J]. 信息通信, 2017(10):10-13. Sun Muge, Sun Xuehong, Zhang Xuan, et al. An enhanced adaptive threshold optimization algorithm based on energy detection[J]. Information & Communication, 2017(10):10-13.
[3] 龙颖贤, 张宁, 周峰, 等. 一种基于噪声估计的能量检测自适应门限新算法[J]. 电信科学, 2012, 28(5):49-53. Long Yingxian, Zhang Ning, Zhou Feng, et al. A new adaptive threshold algorithm based on noise estimation for energy detection[J]. Telecommunications Science, 2012, 28(5):49-53.
[4] 褚御芝, 郑宝玉, 季薇. 协同频谱感知中的融合策略[J]. 南京邮电大学学报(自然科学版), 2010, 30(3):39-45. Chu Yuzhi, Zheng Baoyu, Ji Wei. Date fusion schemes based on cooperative spectrum sensing[J]. Journal of Nanjing University of Posts and Telecommunications(Natural Science), 2010, 30(3):39-45.
[5] Liang Y C, Zeng Y, Peh E C Y, et al. Sensing-throughput tradeoff for cognitive radio networks[J]. IEEE Transactions on Wireless Communications, 2008, 7(4):1326-1337.
[6] 陈凯, 黄英来, 高文韬, 等. 一种基于属性加权补集的朴素贝叶斯文本分类算法[J]. 哈尔滨理工大学学报, 2018(4):69-74. Chen Kai, Huang Yinglai, Gao Wentao, et al. An improved naive bayesian text classification algorithm based on weighted features and its complementary set[J]. Journal of Harbin University of Science and Technology, 2018(4):69-74.
[7] 李玲远, 杨爽. 基于信噪比加权的协作频谱感知技术[J]. 华中师范大学学报(自科版), 2010, 44(4):577-579. Li Lingyuan, Yang Shuang. SNR-based weighted cooperative spectrum sensing in cognitive radio[J]. Journal of Huazhong Normal University(Natural Sciences), 2010, 44(4):577-579.
[8] Quan Z, Cui S, Sayed A H. An optimal strategy for cooperative spectrum sensing in cognitive radio networks[C]//IEEE GLOBECOM 2007-IEEE Global Telecommunications Conference. IEEE, 2007:2947-2951.
[9] 刘斌, 杨俊安. 基于数据融合的加权合作频谱感知技术[J]. 电子技术应用, 2008, 34(12):118-121. Liu Bin, Yang Junan. Weighted cooperative spectrum sensing technology based on data fusion[J]. Application of electronic technique, 2008, 34(12):118-121.
[10] Chen L, Wang J, Li S. An adaptive cooperative spectrum sensing scheme based on the optimal data fusion rule[C]//International Symposium on Wireless Communication Systems. Trondheim, Norway:IEEE, 2007:582-586.
[11] 黄堂森, 王结太. 基于监督学习的自适应协作频谱感知算法[J]. 光电子·激光, 2016(9):1010-1016. Huang Tangsen, Wang Jietai. An adaptive cooperative spectrum sensing algorithm based on supervised learning[J]. Journal of Optoelectronics·Laser, 2016(9):1010-1016.
[12] Thilina K M, Choi K W, Saquib N, et al. Machine learning techniques for cooperative spectrum sensing in cognitive radio networks[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(11):2209-2221.
[13] Hei Y, Li W, Li M, et al. Optimization of multiuser MIMO cooperative spectrum sensing in cognitive radio networks[J]. Cognitive Computation, 2015, 7(3):359-368.
[14] 罗丽平, 李学易, 秦家银. 认知MIMO系统频谱检测与吞吐量折中[J]. 中山大学学报(自然科学版), 2012, 51(2):6-11. Luo Liping, Li Xueyi, Qin Jiayin. Spectrum sensing and throughput tradeoff for cognitive MIMO system[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2012, 51(2):6-11.
[15] 刘祥. 基于信噪比阈值的协作频谱感知算法的研究[D]. 合肥:安徽大学, 2014. Liu Xiang. Research on cooperative spectrum sensing algorithm based on SNR threshold[D]. Hefei:Anhui University, 2014.
[16] 周明, 孙树栋. 遗传算法原理及应用[M]. 北京:国防工业出版社, 1999. Zhou Ming, Sun Shudong. Principle and application of genetic algorithms[M]. Beijing:National Defense Industry Press, 1999.
文章导航

/