综述

高铁接触网悬吊线索疲劳寿命研究进展

  • 何凡 ,
  • 孙娟 ,
  • 陈立明
展开
  • 1. 北京建筑大学理学院, 北京 102612;
    2. 中国铁道科学研究院标准计量研究所, 北京 100015
何凡,副教授,研究方向为工程力学,电子信箱:hefan@bucea.edu.cn

收稿日期: 2018-11-19

  修回日期: 2019-03-25

  网络出版日期: 2019-11-06

基金资助

中国铁路总公司科技研究开发计划重点课题(2017J010-A)

Research progress on fatigue life of suspension wires in catenary of high-speed railway

  • HE Fan ,
  • SUN Juan ,
  • CHEN Liming
Expand
  • 1. School of Science, Beijing University of Civil Engineering and Architecture, Beijing 102612, China;
    2. Institute of Standards & Metrology Research, China Academy of Railway Sciences, Beijing 100015, China

Received date: 2018-11-19

  Revised date: 2019-03-25

  Online published: 2019-11-06

摘要

由于列车速度的不断提高,接触网悬吊线索的振动幅度也随之增大,对列车的安全行驶造成了不良的影响。接触网悬吊线索疲劳寿命与列车安全行驶密切相关。分析了接触网悬吊线索在材料疲劳、弓网关系等方面的性能,并在已有研究成果的分析与总结的基础上,指出了目前接触网悬吊线索疲劳性能研究中存在的接触网部件变形、弓网空气动力学、研究方法等问题,展望了接触网和环境风场之间的双向流固耦合、接触网实测数据的维度等方面的研究与趋势。

本文引用格式

何凡 , 孙娟 , 陈立明 . 高铁接触网悬吊线索疲劳寿命研究进展[J]. 科技导报, 2019 , 37(20) : 84 -93 . DOI: 10.3981/j.issn.1000-7857.2019.20.009

Abstract

Due to the increased train speed, the vibration amplitude of the suspension wires in the catenary increases, with a bad effect on the safe driving of the train. The fatigue life of the suspension wires is closely related to the safe driving of the train. In this paper, the performance of the catenary suspension wires with respect to the material fatigue and the pantographcatenary relationship is analyzed, and the existing problems of the catenary component deformation, the pantograph-catenary aerodynamics and the research methods for the study of the fatigue performance of the catenary suspension wires are pointed out, and the future research and development trends in the aspects of the two-way fluid-solid interaction between the catenary and the environmental wind field, the dimensions of the measured data of the catenary are highlighted.

参考文献

[1] Huh Y H, Kim D I, Kim D J, et al. An investigation of fatigue characteristics of copper film[J]. Experimental Mechanics, 2011, 51(7):1033-1038.
[2] Nasution F P, Saevikk S, Berge S. Experimental and finite element analysis of fatigue strength for 300 mm2 copper power conductor[J]. Marine Structures, 2014, 39(39):225-254.
[3] Huang H L, Mao S W, Gan D, et al. The strain amplitude controlled fatigue behavior of pure copper with ultra large grain size[J]. Material Science & Engineering A, 2013, 559(1):170-177.
[4] 刘方林, 张静, 杨红梅, 等. 高速接触线动态疲劳可靠性研究[J]. 机械科学与技术, 2016, 35(10):1618-1623. Liu Fanglin, Zhang Jing, Yang Hongmei, et al. Investigation on dynamic fatigue reliability of high-speed contact line[J]. Mechanical Science and Technology, 2016, 35(10):1618-1623.
[5] 王伟, 吴积钦, 关金发, 等. 高速铁路接触网吊弦疲劳实验台[J]. 高速铁路技术, 2014, 5(3):22-25. Wang Wei, Wu Jiqin, Guan Jinfa, et al. A fatigue test rig of high-speed railway catenary dropper[J]. High Speed Railway Technology, 2014, 5(3):22-25.
[6] Chen L M, Peng P H, He F. Fatigue life analysis of dropper used in pantograph-catenary system of high-speed railway[J]. Advances in Mechanical Engineering, 2018, 10(5):1-10.
[7] 杨广英. 高速铁路接触网整体吊弦断裂分析及改进效果验证[J]. 铁道技术监督, 2016, 44(9):21-23. Yang Guangying. Analysis of the overall suspension chord fracture of the contact network of high-speed railway and its improvement effect verification[J]. Railway Technical Supervision, 2016, 44(9):21-23.
[8] 鲁敏, 韩兰贵. 高速铁路接触网耐疲劳载流整体吊弦的研发与比较[J]. 铁道工程技术与经济, 2017, 32(3):1-4. Lu Min, Han Langui. Research and comparison of fatigue resistant current carrying integral hanging string for high speed railway contact network[J]. Railway Engineering Technology and Economy, 2017, 32(3):1-4.
[9] 郭奇章. 高速电气化铁路弓网关系[J]. 中国铁路, 2012(7):45-47. Guo Qizhang. The arch network relationship of high speed electrified railway[J]. Chinese Railways, 2012(7):45-47.
[10] 汪宏睿, 刘志刚, 宋洋. 基于ZAMD的高速铁路弓网接触压力及接触线不平顺时频分析[J]. 铁道学报, 2016, 38(1):41-47. Wang Hongrui, Liu Zhigang, Song Yang. The time frequency analysis of the contact pressure and the contact line irregularity of the high-speed railway based on ZAMD[J]. Journal of the China Railway Society, 2016, 38(1):41-47.
[11] Wu J, Wu G N, Gao G Q, et al. Pantograph-catenary arc test apparatus for high-speed railway[J]. Instrumentation, 2014, 1(2):60-66.
[12] 陈乐瑞, 潘秋萍. 电气化铁路弓网电弧现象研究[J]. 工业控制计算机, 2016, 29(9):144-145. Chen Lerui, Pan Qiuping. Research on arc phenomenon between pantograph and catenary in electrified railway[J]. Industrial Control Computer, 2016, 29(9):144-145.
[13] 王万岗, 吴广宁, 高国强, 等. 高速铁路弓网电弧试验系统[J]. 铁道学报, 2012, 34(4):26-31. Wang Wan'gang, Wu Guangning, Gao Guoqiang, et al. The pantograph-catenary arc test system for highspeed railway[J]. Railway Transaction, 2012, 34(4):26-31.
[14] Gao G Q, Zhang T T, Wei W F, et al. A pantograph arcing model for electrified railways with different speeds[J]. Journal of Rail and Rapid Transit, 2017:1-10.
[15] Bucca G, Collina A, Manigrasso, et al. Analysis of electrical interferences related to the current collection quality in pantgraph-catenary interaction[J]. Rail and Rapid Transit, 2015, 225:483-499.
[16] Gao G Q, Hao J, Wei W F, et al. Dynamics of pantograph-catenary arc during the pantograph lowering process[J]. IEEE Transactions on Plasma Science, 2016, 44(11):2715-1723.
[17] Zhu G Y, Gao G Q, Wu G N, et al. Modeling pantograph-catenary arcing[J]. Journal of Rail and Rapid Transit, 2016, 230(7):1687-1697.
[18] Huang S Z, Zhang F, Yu L L, et al. Overview of noncontact pantograph-catenary arc detection based on image processing[C]//International Symposium for Intelligent Transportation & Smart City. Shanghai:Springer, 2017:279-289.
[19] Gao G Q, Yan X, Yang Z F, et al. Pantograph-catenary arcing detection based on electromagnetic radiation[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 99:1-7.
[20] Peng K S, Gao G Q. The fluence of power factor and traction current on pantograph-catenary arc energy[C]. IEEE 2016 International Conference on High Voltage Engineering and Application(ICHVE)Chengdu, 2016:1-4.
[21] 朱光亚, 吴广宁, 高国强, 等. 高速列车静态升降弓电弧的磁流体动力学仿真研究[J]. 高电压技术, 2016, 42(2):642-649. Zhu Guangya, Wu Guangning, Gao Guoqiang, et al. MHD simulation and analysis of pantograph-catenary arc in the process of pantographes raising and lowering[J]. High Voltage Engineering, 2016, 42(2):642-649.
[22] Johann Deml, Wilhelm Baldauf. A new test bench for examinations of the pantograph-catenary interaction[C]. Proceedings World Conference on Railway Research. 2001:1-5.
[23] Massat J P, Nguyen-Tajan T M L, Maitournam H, et al. Fatigue analysis of catenary contact wires for high speed trains[C]. The 9th World Congress on Railway Research, 2014:1-11.
[24] 张静, 刘志刚, 鲁小兵, 等. 高速弓网空气动力学研究进展[J]. 铁道学报, 2015, 37(1):7-15. Zhang Jing, Liu Zhigang, Lu Xiaobing, et al. Study on aerodynamics development of high-speed pantograph and catenary[J]. Journal of the China Railway Society, 2015, 37(1):7-15.
[25] 宋洋, 刘志刚, 汪宏睿, 等. 随机风场下高速铁路接触线风振疲劳分析[J]. 铁道学报, 2015, 37(7):20-25. Song Yang, Liu Zhigang, Wang Hongrui, et al. Analysis on influence of stochastic wind field on wind vibration fatigue of high speed railway catenary[J]. Journal of the China Railway Society, 2015, 37(7):20-25.
[26] 高洪波, 宋东升, 黄宇立. 基于AR模型的脉动风速时程模拟[J]. 山西建筑, 2015, 41(27):33-35.Gao Hongbo, Song Dongsheng, Huang Yuli. Wind speed time history simulation of pulsating wind based on AR model[J]. Shanxi Architecture, 2015, 41(27):33-35.
[27] 孙瑛, 林斌, 武岳, 等. 脉动风场数值模拟的POD-谐波合成法[J]. 哈尔滨工业大学学报, 2011, 43(12):13-17. Sun Ying, Lin Bin, Wu Yue, et al. Waws/pod simulatuin of fluctuating wind field[J]. Journal of Harbin Institute of Technology, 2011, 43(12):13-17.
[28] 陈艾荣, 王毅. 基于小波方法的脉动风模拟[J]. 同济大学学报(自然科学版), 2005, 33(4):427-431. Chen Airong, Wang Yi. Simulation of random fluctuating wind speed based on wavelet method[J]. Journal of TongJi University Science(Natural Science Edition), 2005, 33(4):427-431.
[29] 刘志刚, 侯运昌, 韩志伟, 等. 基于风场模拟的高速接触网动态性能分析[J]. 铁道学报, 2013, 35(11):21-28. Liu Zhigang, Hou Yunchang, Han Zhiwei, et al. Dynamic performance analysis of high speed catenary based on wind field simulation[J]. Journal of the China Railway Society, 2013, 35(11):21-28.
[30] Liu Z G, Song Y, Wang Y, et al. The catenary vibration response of high-speed electrified railway considering horizontal wind[C]//Proceedings of the 2013 International Conference on Electrical and Information Technologies for Rail Transportation Berlin:Springer, 2014:45-54.
[31] Duan F C, Liu Z G, Song Y. Study on the current collection of high speed pantograph-catenary system considering static wind perturbation and friction coupling[C]. 35th Chinese Control Conference, 2016:10236-10241.
[32] Song Y, Liu Z G, Ouyang H J, et al. Sliding mode control with PD sliding surface for high-speed railway pantograph-catenary contact force under strong stochastic wind field[J]. Shock and Vibration, 2017:4895321.
[33] Zhu W L, Zhou Q, Luo W. Wind-induced vibration analysis of railway catenary system based on fluctuating wind field simulation[J]. Machinery & Electronics, 2011:76-78.
[34] 宋洋, 刘志刚, 汪宏睿. 高速铁路覆冰接触线气动系数研究与风振响应分析[J]. 铁道学报, 2014, 36(9):20-27. Song Yang, Liu Zhigang, Wang Hongrui. Study on aerodynamic parameters and wind vibration responses of iced contact wires of high-speed railways[J]. Journal of the China Railway Society, 2014, 36(9):20-27.
[35] 毕继红, 陈花丽, 任洪鹏. 基于雨流计数法的接触线疲劳寿命分析[J]. 铁道学报, 2012, 34(6):34-39. Bi Jihong, Chen Huali, Ren Hongpeng. Analysis on fatigue life of contact wire based on rain flow counting method[J]. Journal of the China Railway Society, 2012, 34(6):34-39.
[36] 董月香, 高增梁. 疲劳寿命预测方法综述[J]. 大型铸锻件, 2006(3):39-41. Dong Yuexiang, Gao Zengliang. A review of fatigue life prediction methods[J]. Heavy Casting and Forging, 2006(3):39-41.
[37] 王晓阳, 张卫华, 李瑞平, 等. 基于名义应力法的弹性链型接触网疲劳寿命预测[J]. 计算机辅助工程, 2014, 23(6):7-12. Wang Xiaoyang, Zhang Weihua, Li Ruiping, et al. Fatigue life prediction of elastic stitched catenary based on nominal stress method[J]. Computer Aided Engineering, 2014, 23(6):7-12.
[38] 毕继红, 陈花丽, 任洪鹏. 基于简化载荷谱法与雨流计数法的接触网疲劳寿命对比分析[J]. 铁道标准设计, 2012, 23(4):116-119. Bi Jihong, Chen Huali, Ren Hongpeng. Comparative analysis on fatigue life of overhead catenary based on simplified load spectrum method and rain flow counting method[J]. Railway Standard Design, 2012, 23(4):116-119.
[39] 陈花丽. 高速铁路接触网的疲劳寿命分析[D]. 天津:天津大学, 2011. Chen Huali. The fatigue life analysis of high-speed railway contact system[D]. Tianjin:Tianjin University, 2011.
[40] 毕继红, 任洪鹏, 陈花丽. 基于雨流计数法的弹性链型柔性悬挂接触网疲劳寿命分析[J]. 铁道科学与工程学报, 2012, 9(1):61-67. Bi Jihong, Ren Hongpeng, Chen Huali. The fatigue analysis on the elastic chain flexible suspension catenary system based on rain flow counting[J]. Journal of Railway Science and Engineering, 2012, 9(1):61-67.
文章导航

/