研究论文

车载方舱手术室颗粒物质量浓度分布仿真与参数优化

  • 宇慧平 ,
  • 蔡安文 ,
  • 皮本松 ,
  • 龙连春 ,
  • 李朝辉
展开
  • 1. 北京工业大学机械工程与应用电子技术学院, 北京 100024;
    2. 北京新立机械有限责任公司, 北京 100039
宇慧平,副教授,研究方向为计算力学、多学科数值仿真与优化,电子信箱:yuhuiping@bjut.edu.cn

收稿日期: 2018-11-10

  修回日期: 2019-08-27

  网络出版日期: 2019-11-06

基金资助

国家自然科学基金项目(11272020)

The simulation of particle mass concentration distribution in the vehicle operation room and the parameter optimization

  • YU Huiping ,
  • CAI Anwen ,
  • PI Bensong ,
  • LONG Lianchun ,
  • LI Zhaohui
Expand
  • 1. College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100024, China;
    2. Beijing Xinli Machinery Co., Ltd., Beijing 100039, China

Received date: 2018-11-10

  Revised date: 2019-08-27

  Online published: 2019-11-06

摘要

为有效降低车载方舱手术室的颗粒物质量浓度,提高室内空气洁净度,通过对某车载方舱手术室颗粒物扩散分布规律的仿真分析,以工作平面颗粒物质量浓度最小为目标,以工作平面平均风速为约束条件,建立优化模型,采用序列响应面法对送风速度和送风角度参数进行了优化求解研究。结果表明,手术室的回风口在长边壁面对称布置时,能有效促进室内空气的流动,有利于颗粒物质量浓度的降低;在顶部送风、两长边壁面下侧回风的非单向流手术室内,颗粒物质量浓度主要受气流的影响,主导颗粒物扩散的方向为下风向时,主流区的颗粒物质量浓度较小,医护人员周边及壁面的颗粒物质量浓度较大;优化后的送风速度和送风角度使手术室的颗粒物质量浓度降低78.19%,室内空气质量达到洁净标准。该优化方法可为野外环境下的洁净手术室通风系统设计提供依据。

本文引用格式

宇慧平 , 蔡安文 , 皮本松 , 龙连春 , 李朝辉 . 车载方舱手术室颗粒物质量浓度分布仿真与参数优化[J]. 科技导报, 2019 , 37(20) : 94 -100 . DOI: 10.3981/j.issn.1000-7857.2019.20.010

Abstract

In order to effectively reduce the mass concentration of the particles and improve the air cleanliness level in the operating clean room in the expandable shelter vehicle, the diffusion particles in an non-unidirectional flow clean operating room are analyzed. The minimum mass concentration of the particles in the working plane is set as the goal, and the optimization model is established with the average wind speed of the working plane, as the constraint condition. The sequential response surface method is used to optimize the velocity and the angle of supplying the air. It is shown that when the outlet of the operating room is arranged symmetrically on the long side wall, the flow of the indoor air could be well activated to reduce the mass concentration of the particle. In the non-unidirectional flow operating room, the mass concentration of the particles is mainly affected by the flow of the air. When the dominant diffusion direction of the particles is changed to the downwind, the mass concentration of the particles in the main flow area is relatively low and the mass concentration of the particles in the surrounding area, around the area of the medical staff and the wall of the operating room, may be larger. With the velocity and the angle of supplying the air optimized by the response surface method, the mass concentration of the particles could be reduced by 78.19% to make the air quality of the operating room reach the clean standard. Also, this optimized method helps the ventilation design of the vehicle operating room.

参考文献

[1] 董淑芸, 凃光备, 曹荣光. 手术感染的概况及预防措施[J]. 洁净与空调技术, 2007(1):35-39. Dong Shuyun, Tu Guangbei, Cao Rongguang. General situation and preventive measures of surgical infection[J]. Clean and Air Conditioning Technology, 2007(1):35-39.
[2] 朱明杰, 徐文华. 关于洁净手术局部压力控制的讨论[J]. 洁净与空调技术, 2007(1):22-25. Zhu Mingjie, Xu Wenhua. Discussion on the control of local pressure in clean surgery[J]. Clean and Air Conditioning Technology, 2007(1):22-25.
[3] Catchpole K, Mishra A, Handa A, et al. Teamwork and error in the operating room:Analysis of skills and roles.[J]. Annals of Surgery, 2008, 247(4):699.
[4] 邵建敏, 张建飞, 吴学红. 典型I级洁净手术室空调气流组织及细菌浓度分布模拟与优化[J]. 热科学与技术, 2014, 13(4):347-351. Shao Jianmin, Zhang Jianfei, Wu Xuehong. Simulation and optimization of air distribution and bacterial concentration distribution in air conditioning system of typical I grade clean operation room[J]. Thermal Science and Technology, 2014, 13(4):347-351.
[5] Woloszyn M, Virgone J, Mélen S. Diagonal air-distribution system for operating rooms:Experiment and modeling[J]. Building and Environment, 2004, 39(10):1171-1178.
[6] 美国供热制冷与空调工程师学会. 医院空调设计手册[M]. 北京:科学出版社, 2004:357-358. Institute of American heating refrigeration and air conditioning engineers. The hospital air conditioning design handbook[M]. Beijing:Science Press, 2004:357-358.
[7] 潘峰, 宋传学. Ⅰ级洁净手术室设计送风速度优化选择[J]. 中国医院建筑与装备, 2005, 6(4):16-19. Pan Feng, Song Chuanxue. Design optimization of feeding air velocity in I grade clean operation room[J]. Hospital Building and Equipment in China, 2005, 6(4):16-19.
[8] 李晓虹, 苏华, 甘涛. 某医院Ⅰ级手术室速度场数值模拟与分析[J]. 洁净与空调技术, 2009(3):20-22. Li Xiaohong, Su Hua, Gan Tao. Numerical analysis of velocity field in 1st grade clean operating room[J]. Contamination Control and Air Conditioning Technology, 2009(3):20-22.
[9] 李晓虹, 苏华. 某医院手术室室内空调参数CFD分析[J]. 制冷与空调, 2006, 20(4):29-32. Li Xiaohong, Su Hua. CFD simulation of air conditioning parameters in hospital operating room[J]. Refrigeration and Air Conditioning, 2006, 20(4):29-32.
[10] 隋允康, 宇慧平. 响应面方法的改进及其对工程优化的应用[M]. 北京:科学出版社, 2011:4-19. Sui Yunkang, Yu Huiping. The response surface method and the improvement of engineering optimization application[M]. Beijing:Science Press, 2011:4-19.
[11] Mccrory D C, Coeytaux R R, Jr W S Y, et al. Response surface methodology:Process and product optimization using designed experiments[J]. Journal of Statistical Planning & Inference, 1997, 59(3):284-286.
[12] Driel W D V, Zhang G Q, Janssen J H J, et al. Response surface modeling for nonlinear packaging stresses[J]. Journal of Electronic Packaging, 2003, 125(4):121-126.
[13] Lin P T, Gea H C. Reliability-Based multidisciplinary design optimization using probabilistic gradient-based transformation method[J]. Journal of Mechanical Design, 2012, 135(2):021001.
[14] Kumar S, Dhingra A K, Kumar S. Parametric optimization of powder mixed electrical discharge machining for nickel-based superalloy inconel-800 using response surface methodology[J]. Mechanics of Advanced Materials & Modern Processes, 2017, 3(1):7.
[15] 蒋水华, 祁小辉, 曹子君, 等. 基于随机响应面法的边坡系统可靠度分析[J]. 岩土力学, 2015, 36(3):809-818. Jiang Shuihua, Qi Xiaohui, Cao Zijun, et al. Reliability analysis of slope system based on stochastic response surface method[J]. Rock and Soil Mechanics, 2015, 36(3):809-818.
[16] 邬晓敬, 张伟伟, 肖华, 等. 一种基于响应面的翼型鲁棒优化设计方法[J]. 工程力学, 2015, 32(2):250-256. Wu Xiaowei, Zhang Weiwei, Xiao Hua, et al. A robust optimization design method for airfoil based on response surface[J]. Engineering Mechanics, 2015, 32(2):250-256.
[17] 隋允康, 易桂莲, 杜家政. 薄壳结构噪声约束下附加阻尼层的最小成本设计[J]. 应用力学学报, 2011, 28(2):123-128. Sui Yunkang, Yi Guilian, Du Jiazheng. Minimum cost design of shell structure with additional damping under noise constraint[J]. Chinese Journal of Applied Mechanics. 2011, 28(2):123-128.
[18] 王福军. 计算流体动力学分析:CFD软件原理与应用.[M]. 北京:清华大学出版社, 2004:120-124. Wang Fujun. Analysis of hydrokinetics:Theory and application of software[M]. Beijing:Tsinghua University Press, 2004:120-124.
[19] Wu C L, Nandakumar K, Berrouk A S, et al. Enforcing mass conservation in DPM-CFD models of dense particulate flows[J]. Chemical Engineering Journal, 2011, 174(1):475-481.
[20] Li L C. CFD-DPM modeling of gas-liquid flow in a stirred vessel[J]. Advanced Materials Research, 2012, 550-553, 979-983.
[21] 李静雅, 徐力生, 徐蒙. 基于CFD-DPM耦合法新型差压密度计中水泥浆液流动特性分析[J]. 中南大学学报(自然科学版), 2017, 48(5):1308-1315. Li Jinya, Xu Lisheng, Xu Meng. Flow characteristic analysis of grout in new type differential pressure densimeter based on CFD-DPM coupling method[J]. Journal of Central South University (Science and Technology), 2017, 48(5):1308-1315.
[22] Lu L, Xu J, Ge W, et al. Computer virtual experiment on fluidized beds using a coarse-grained discrete particle method EMMS-DPM[J]. Chemical Engineering Science, 2016, 155(11):314-337.
[23] 中华人民共和国卫生部. 医院洁净手术部建筑技术规范:GB50333-2002[S]. 北京:中国计划出版社, 2002. Ministry of Health of China. Technical specification for construction of hospital clean operating department:GB50333-2002[S]. Beijing:China Planning Publishing House, 2002.
文章导航

/