专题:光宇空间装置及规划

追踪宇宙“信使”冲击世纪谜题——高海拔宇宙线观测站简介

  • 查敏 ,
  • 陈松战 ,
  • 吴含荣 ,
  • 马玲玲 ,
  • 马欣华 ,
  • 胡红波
展开
  • 中国科学院高能物理研究所, 北京 100049
查敏,副研究员,研究方向为高能宇宙线,电子信箱:zham@ihep.ac.cn;陈松战(共同第一作者),副研究员,研究方向为高能宇宙线,电子信箱:chensz@ihep.ac.cn;吴含荣(共同第一作者),副研究员,研究方向为高能宇宙线,电子信箱:wuhr@ihep.ac.cn;马玲玲(共同第一作者),副研究员,研究方向为高能宇宙线,电子信箱:llma@ihep.ac.cn;马欣华(共同第一作者),研究员,研究方向为高能宇宙线,电子信箱:maxh@ihep.ac.cn

收稿日期: 2018-08-31

  修回日期: 2018-09-28

  网络出版日期: 2019-11-15

基金资助

国家自然科学基金面上项目(11675187,11575203);国家自然科学基金天文联合基金项目(U1731136);国家自然科学基金青年科学基金项目(11505190);中国科学院国际合作局对外合作重点项目(113111KYSB20170055);国家自然科学基金重点项目(11635011)

Tracking the “Messenger” of the universe, challenging puzzle of the century: A brief introduction to the Large High Altitude Air Shower Observatory

  • ZHA Min ,
  • CHEN Songzhan ,
  • WU Hanrong ,
  • MA Lingling ,
  • MA Xinhua ,
  • HU Hongbo
Expand
  • Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Received date: 2018-08-31

  Revised date: 2018-09-28

  Online published: 2019-11-15

摘要

宇宙线的研究具有悠久的历史,取得了许多划时代的发现性成果。但是人类对宇宙线的起源、加速和传播等问题仍存在诸多疑惑。大型高海拔空气簇射观测站(LHAASO)独具高海拔和大规模优势,计划利用多种探测手段开展联合观测,大幅提升对伽马和宇宙线粒子的鉴别能力。LHAASO有望获得史上最高的伽玛探测灵敏度,并在很宽的能量范围内精确测量宇宙线能谱,为宇宙线物理、高能天体物理、宇宙学和新物理学规律研究做出贡献。介绍了LHAASO的探测器结构、性能优势和科学目标。

本文引用格式

查敏 , 陈松战 , 吴含荣 , 马玲玲 , 马欣华 , 胡红波 . 追踪宇宙“信使”冲击世纪谜题——高海拔宇宙线观测站简介[J]. 科技导报, 2019 , 37(21) : 32 -45 . DOI: 10.3981/j.issn.1000-7857.2019.21.004

Abstract

A lot of epoch-making discoveries have been revealed by the century long study of cosmic rays. However, issues related to the origin, acceleration and propagation of cosmic rays remain to be mysterious. The large high altitude air shower observatory (LHAASO) is a unique experiment having both advantages of high altitude and large effective area. Besides, LHAASO will greatly improve the discrimination power between gamma ray and cosmic rays by using the hybrid detector technology. LHAASO is expected to obtain unprecedented gamma ray detection sensitivity and to make very precise measurement in cosmic ray spectrum in a very wide energy range. LHAASO will make important contribution to understanding fundamental problem of cosmic ray, to the research in high-energy astrophysics, cosmology and the exploration of new physics. This paper briefly describes the concept and structure of LHAASO detectors, the advanced performance, and scientific goal of LHAASO.

Key words: cosmic rays; gamma rays; LHAASO

参考文献

[1] Hess V F. Ber Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten[J]. Physikalischen Zeitschrift, 1912, 13:1084-1091.
[2] Amenomori M, Ayabe S, Bi X J, et al. The all-particle spectrum of primary cosmic rays in the wide energy range from 1014 to 1017 eV observed with the Tibet-III AirShower Array[J]. The Astrophysical Journal, 2008, 678(2):1165.
[3] Bartoli B, Bernardini P, Bi X J, et al. Knee of the Cosmic Hydrogen and Helium Spectrum below 1 PeV Measured by ARGO-YBJ and a Cherenkov Telescope of LHAASO[J]. Physical Review D, 2015, 92(9):092005.
[4] Amenomori M, Ayabe S, Bi X J, et al. Anisotropy and corotation of galactic cosmic rays[J]. Science, 2006, 314(5798):439-443.
[5] Amenomori M, Ayabe S, Bi X J, et al. Northern sky Galactic Cosmic Ray anisotropy between 10-1000 TeV with the Tibet Air Shower Array[J]. The Astrophysical Journal, 2017, 836(2):153.
[6] Bartoli B, Bernardini P, Bi X J et al. TeV Gamma-ray survey of the northern sky using the ARGO-YBJ Detector[J]. The Astrophysical Journal, 2013, 779(1):27.
[7] He H H. For the LHAASO collaboration, design of the LHAASO detectors[J]. Radiation Detection Technology and Methods, 2018, 2:7.
[8] Cui S, Liu Y, Liu Y, et al. Simulation on gamma ray astronomy research with LHAASO-KM2A[J]. Astroparticle Physics, 2014, 54:86-92.
[9] Bernlöhr K, Barnacka A, Becherini Y, et al. Monte Carlo design studies for the Cherenkov Telescope Array[J]. Astroparticle Physics, 2013, 43:171-188.
[10] Acero F, Ackermann M, Ajello M, et al. Fermi Large Area Telescope third source catalog[J]. Astrophysical Journal Supplement Series, 2015, 218(2):23.
[11] Ackermann M, Ajello M, Atwood W B, et al. 2FHL:The second catalog of hard Fermi-LAT sources[J]. Astrophysical Journal Supplement Series, 2016, 222(1):5.
[12] TeVCat[EB/OL].[2018-07-30]. http://tevcat.uchicago.edu/.
[13] Ackermann M, Ajello M, Allafort A, et al. Detection of the characteristic pion-decay signature in supernova remnants[J]. Science, 2013, 339(6121):807-811.
[14] Yuan Q, Liu S M, Bi X J. An attempt at a unified model for the gamma-ray emission of supernova remnants[J]. The Astrophysical Journal, 2012, 761(2):133.
[15] Liu Y, Cao Z, Chen S, et al. Expectation on observation of supernova remnants with the LHAASO project[J]. The Astrophysical Journal, 2016, 826(1):63.
[16] Abramowski A, Aharonian F, Benkhali F A, et al. Acceleration of petaelectronvolt protons in the Galactic Centre[J]. Nature, 2016, 531(7595):476-479.
[17] Tavani M, Bulgarelli A, Vittorini V, et al. Discovery of powerful gamma-ray flares from the Crab Nebula[J]. Science, 2011, 331(6018):736-739.
[18] Abdo A A, Ackermann M, Ajello M, et al. Gamma-ray flares from the Crab Nebula[J]. Science, 2011, 331(6018):739-742.
[19] Abeysekara A U, Albert A, Alfaro R, et al. The 2HWC HAWC observatory gamma-ray catalog[J]. The Astrophysical Journal, 2017, 843(1):40.
[20] Band D, Matteson J, Ford L, et al. BATSE observations of gamma-ray burst spectra. I-Spectral diversity[J]. The Astrophysical Journal[J]. 1993, 413(1):281-292.
[21] Ackermann M, Asano K, Atwood W B, et al. Fermi observations of GRB 090510:A short-hard gamma-ray burst with an additional, hard power-law component from 10 keV to GeV energies[J]. The Astrophysical Journal, 2010, 716(2):1178-1190.
[22] Abdo A A, Ackermann M, Ajello M, et al. Fermi observations of GRB 090902B:A distinct spectral component in the prompt and delayed emission[J]. The Astrophysical Journal, 2009, 706(1):138-144.
[23] Ackermann M, Ajello M, Asano K, et al. Detection of a spectral break in the extra hard component of GRB 090926A[J]. The Astrophysical Journal, 2011, 729(2):114.
[24] Ackermann M, Ajello M, Asano K, et al. Fermi-LAT observations of the gamma-ray burst GRB 130427A[J]. Science, 2014, 343(6166):42-47.
[25] Bai BY, Zhang S S, Cao Z. Performance of SiPMs and pre-amplifier for the wide field of view Cherenkov telescope array of LHAASO[J]. Nuclear Instruments and Methods in Physics Research, 2018, 899:94-100.
[26] Zhang S S, Bi B Y, Wang C, et al. SiPM-Based camera design and development for the image air Cherenkov Telescope of LHAASO[C]//Proceedings of International Conference on Technology and Instrumentation in Particle Physics 2017, Singapore:Springer, Doi:https://doi.org/10.1007/978-981-13-1313-4_4.
[27] Bartoli B, Bernardini P, Bi X J, et al. Knee of the cosmic hydrogen and helium spectrum below 1 PeV measured by ARGO-YBJ and a Cherenkov telescope of LHAASO[J]. Physical Review D, 2015, 92(9):092005.
[28] Ma L L. Expectation on observation of cosmic rays energy spectrum from 10 PeV to 100 PeV with LHAASO experiment[C]//Proceeding of The 34th International Cosmic Ray Conference, 2017, Busan, Korea, Doi:https://doi.org/10.22323/1.301.0549.
[29] Chen T, Liu C, Gao Q, et al. Study on a wide field-ofview Cherenkov telescope with large dimensional refractive lens for high energy Cosmic Rays detection[C]//Proceeding of The 34th International Cosmic Ray Conference, 2017, Busan, Korea, Doi:https://doi.org/10.22323/1.301.0420.
[30] Bartoli B, Bernardini P, Bi X J, et al. Detection of thermal neutrons with the PRISMA-YBJ array in Extensive Air Showers selected by the ARGO-YBJ experiment[J]. Astroparticle Physics, 2016, 81:49-60.
[31] Fang K, Alvarez-Muniz J, Alves Batista R, et al. The giant radio array for neutrino detection (GRAND):Present and perspectives[C]//Proceeding of The 34th International Cosmic Ray Conference, 2017, Busan, Korea, Doi:https://doi.org/10.22323/1.301.0996.
文章导航

/