空间科学主要是基于航天器平台获取实验数据、实现科学发现的重大前沿基础研究。中国实施了"悟空""慧眼"等一批较大的科学卫星任务。阐述了国际上重要科学发现和成果,提出当前国际上已认识到立方星在空间探索与发现中的重要作用;总结了美欧等航天强国和机构已实施和论证的若干立方星科学探测计划及取得的有影响力的原创科学成果,以及中国立方星技术演示验证和商业航天已取得的进展;提出了中国空间科学界应进一步关注立方星的发展,利用立方星平台开展研究,与传统大中型空间科学卫星形成互补,增强并拓展相关领域的探测能力,有效降低任务难度并缩短研制周期,促进中国空间科学取得更多重大发现和突破。
Space science encompasses all major frontier basic researches that base on spacecraft platforms to obtain experimental data and realize scientific discoveries. China has started to develop scientific satellites such as DAMPE, HXMT. The international scientific community has recognized CubeSats to have important effect on deep space exploration. The occident and institutions support CubeSat's scientific research, and have implemented some missions. Significant progress of CubeSat platform has also been made in China's commercial space and space technology demonstrations, which has laid an important foundation for scientists to make breakthroughs in space science.
[1] 吴季. 空间科学任务及其特点综述[J]. 空间科学学报, 2018, 38(2):139-146. Wu Ji. Characteristics and managements of space science missions[J]. Chinese Journal of Space Science, 2018, 38(2):139-146.
[2] 范全林, 王琴, 白青江. 2018年深空探测热点回眸[J]. 科技导报, 2019, 37(1):52-64. Fan Quanlin, Wang Qin, Bai Qingjiang. Review of 2018 global deep space activities[J]. Science & Technology Review, 2019, 37(1):52-64.
[3] List of covers of Time magazine (1950s)[EB/OL].[2019-03-15]. https://en.wikipedia.org/wiki/List_of_covers_of_Time_magazine_(1950s)#1959.
[4] 吴季. 2016-2030年空间科学规划研究报告[M]. 北京:科学出版社, 2016. Wu Ji. 2016-2030 Space Science Planning Research Report[M]. Beijing:Science Press, 2016.
[5] 范全林, 白青江, 王海名, 等. 从诺贝尔奖看空间科学对科技强国的贡献[J]. 科技导报, 2018, 36(15):8-12. Fan Quanlin, Bai Qingjiang, Wan Haiming, et al. The Nobel Prize as an indicator of space science's contribution to world science and technology power construction[J]. Science & Technology Review, 2018, 36(15):8-12.
[6] 李明. 微小卫星发展的若干思考[J]. 航天器工程, 2016, 25(6):1-5. Li Ming, Perspective on development of micro-small satellites[J]. Spacecraft Engineering, 2016, 25(6):1-5.
[7] Shkolnik E L. On the verge of an astronomy CubeSat revolution[J]. Nature Astronomy, 2018(2):374-378.
[8] Eric H, et al. Breakthrough of the year runners-up[J]. Science, 2014, 346(6216):1444-1449.
[9] ISIS-Innovative solotions in space[EB/OL].[2019-03-15]. https://www.isispace.nl.
[10] Nanosatellite & CubeSat database[EB/OL].[2019-03-15]. https://www.nanosats.eu.
[11] Gunter's space page[EB/OL].[2019-04-15]. https://space.skyrocket.de.
[12] Trends in small satellite technology and the role of the NASA small spacecraft technology program[EB/OL].[2019-03-15]. https://www.nasa.gov/sites/default/files/atoms/files/nac_march2017_blal_ida_sstp_tagged.pdf.
[13] Lal Z, et al. Achievingscience with CubeSats:Thinking inside the box[M]. Washington DC:The National Academies Press, 2016.
[14] Jorgensen T M. Doing science with University Cubesats[C]//The 11th Appleton Space Conference. UK Oxfordshire, 2015.
[15] Querejazu D, Randazzese L. Small satellites, big missions[R]. A report of the CSIS Defense-Industrial Initiatives Group, 2017.
[16] Millan R M, Von Steiger R. Small satellites for space science:A COSPAR roadmap document[R]. 2017.
[17] ISSI forum performing high-quality science on CubeSats[EB/OL].[2019-03-15]. http://www.issibern.ch/program/Forums/Program%20for%20ISSI%20CubeSat%20Forum.pdf.
[18] 8th interplanetary CubeSat workshop[EB/OL].[2019-03-15]. https://icubesat.org.
[19] CSSWE[EB/OL].[2019-04-05]. http://lasp.colorado.edu/home/csswe.
[20] Li X L, Selesnick R, Schiller Q. Measurement of electrons from albedo neutron decay and neutron density in near-Earth space[J]. Nature, 2017(552):382-385.
[21] Messier D. Two tiny ‘CubeSats’ will watch 2016 Mars landing[EB/OL].[2019-04-02]. http://www.space.com/29-489-marco-cubesats-mars-landing-2016.html.
[22] QB50[EB/OL].[2019-04-02]. https://www.qb50.eu.
[23] 何慧东, 李炤坤, 张召才. QB50项目成功发射,航天国际合作再立典范[J]. 国际太空, 2017(11):55-59. He Huidong, Li Zhaokun, Zhang Zhaocai. QB50 project successfully launched, and become a model for international coorperation in space[J]. Space International, 2017(11):55-59.
[24] LunaH-Map[EB/OL].[2019-04-02]. http://lunahmap.asu.edu.
[25] Harbaugh J. LunaH-Map:University-built CubeSat to map water-ice on the moon[EB/OL].[2019-04-03]. https://www.nasa.gov/feature/lunah-map-university-built-cubbesat-to-map-water-ice-on-the-moon.
[26] Mahoney E. NASA Selects lockheed Martin's SkyFire CubeSat for EM-1 secondary payload[EB/OL].[2019-04-03]. https://www.nasa.gov/feature/nasa-selects-lockheed-martin-s-skyfire-cubesat-for-em-1-secondarypayload.
[27] Mahoney E. NASA Announces university CubeSat space mission candidates[EB/OL].[2019-04-03]. http://www.nasa.gov/content/nasa-announces-sixth-round-of-cubesat-space-mission-candidates/#.VQMFLflht8E.
[28] Lightholder J, Thoesen A, Adamson E, et al. Asteroid Origins Satellite (AOSAT) I:An on-orbit centrifuge science laboratory[J]. Acta Astronautica, 2017(133):81-94.
[29] NASA's CubeSat Launch Initiative[EB/OL].[2019-04-05]. https://www.nasa.gov/directorates/heo/home/CubeSats_initiative.
[30] Jackson S. NASA announces tenth round of candidates for CubeSat space missions[EB/OL].[2019-04-06]. https://www.nasa.gov/feature/nasa-announces-tenth-round-ofcandidates-for-cubesat-space-missions.
[31] Wilson J. STMD:centennial challenges[EB/OL].[2019-04-06]. https://www.nasa.gov/directorates/spacetech/centennial_challenges/index.html.
[32] Cottini V, Aslam S, D'Aversa E, et al. CUVE-Cubesat UV experiment:Unveil Venus' UVAbsorber with Cubesat UV mapping spectrometer[C]//European Planetary Science Congress, Riga, Latvia, 2017(11):771-772.
[33] Hong J, Romai S, et al. CubeSat X-ray telescope (CubeX) for lunar elemental abundance mapping and millisecond X-ray pulsar[C]//49th Lunar and Planetary Science Conference, Texas, United States, 2018.
[34] Jenner L. NASA studies tethered CubeSat mission to study lunar swirls[EB/OL].[2019-04-06]. https://www.nasa.gov/feature/goddard/2017/nasa-studies-tetheredcubesat-mission-to-study-lunar-swirls.
[35] Nakamura M K, Bermúdez L, et al. The CAESAR new frontiers mission:Contamination, recovery and curation[C]//49th Lunar and Planetary Science Conference, Texas, United States, 2018.
[36] NASA solicitation and proposal integrated review and evaluation system[EB/OL].[2019-04-07]. https://nspires.nasaprs.com/external/solicitations/solicitations!closedPastInit.do.
[37] 白青江, 范全林. 美国两个日球层物理小型科学任务致力于揭秘空间天气影响[J]. 空间科学学报, 2019, 39(4):415-416. Bai Qingjiang, Fan Quanlin. Two small-scale physics missions of United States dedicated to revealing the effects of space weather[J]. Chinese Journal of Space Science, 2019, 39(4):415-416.
[38] Topputo F, Massari M, Bigg J. LUMIO:Lunar meteoroid impact observer[C]//iCubeSat workshop, Cambridge, UK, 2017.
[39] Kruzelecky R V, Murzionak P, Lavoie J, et al. VMMO lunar volatile and mineralogy mapping orbiter[C]//48th International Conference on Environmental Systems, New Mexico, 2018:1-20.
[40] The university of Nairobi hands the first KiboCUBE CubeSat over to JAXA under UNOOSA-JAXA KiboCUBE programme[EB/OL].[2019-04-07]. http://global.jaxa.jp/press/2018/01/20180119_kibocube.html.
[41] Ambrosi G, An Q, Asfandiyarov R. Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons[J]. Nature, 2017, 552:63-66.
[42] Yin J, Cao Y, Li Y H, et al. Satellite-based entanglement distribution over 1200 kilometers[J]. Science, 2017, 356(6343):1140-1144.
[43] Collaboration V, Collaboration I P N, Collaboration S. Multi-messenger observations of a binary neutron star merger[J]. The Astrophysical Journal Letters, 2017, 848(2):1-59.