综述

氧化还原介体催化强化污染物厌氧降解研究进展

  • 班巧英 ,
  • 刘琦 ,
  • 余敏 ,
  • 李建政 ,
  • 秦岩
展开
  • 1. 山西大学环境与资源学院, 太原 030006;
    2. 哈尔滨工业大学环境学院, 哈尔滨 150090
班巧英,副教授,研究方向为废水厌氧生物处理,电子信箱:banqiaoying@163.com

收稿日期: 2018-12-10

  修回日期: 2019-06-17

  网络出版日期: 2019-11-15

基金资助

国家自然科学基金项目(51708341);山西省"青年三晋学者"支持计划项目;山西省高等学校优秀创新团队支持计划项目;山西省青年科技研究基金项目(201701D221215)

Review on catalytic effects of redox mediator in anaerobic degradation of pollutants

  • BAN Qiaoying ,
  • LIU Qi ,
  • YU Min ,
  • LI Jianzheng ,
  • QIN Yan
Expand
  • 1. College of Environment and Resource, Shanxi University, Taiyuan 030006, China;
    2. School of Environment, Harbin Institute of Technology, Harbin 150090, China

Received date: 2018-12-10

  Revised date: 2019-06-17

  Online published: 2019-11-15

摘要

由于厌氧生物处理技术具有产生剩余污泥少、可回收能源等优点而被广泛用于处理各种有机污染物,尤其在有毒、有害、难降解污染物的去除方面取得了良好的效果。然而,厌氧生物法的处理速率通常比较低,而氧化还原介体可通过自身不断的氧化和还原来传递电子,提高电子在氧化还原反应过程中的传递速率,从而促进污染物高效厌氧降解。醌类物质和腐殖酸是应用较多的氧化还原介体,在催化难降解污染物降解方面取得了一定效果。讨论了氧化还原介体的特点、作用机制,并总结了其对偶氮染料厌氧脱色、反硝化和多氯联苯厌氧降解的强化作用,提出了氧化还原介体未来的研究方向。

本文引用格式

班巧英 , 刘琦 , 余敏 , 李建政 , 秦岩 . 氧化还原介体催化强化污染物厌氧降解研究进展[J]. 科技导报, 2019 , 37(21) : 88 -96 . DOI: 10.3981/j.issn.1000-7857.2019.21.008

Abstract

Anaerobic biological treatment technology has been widely used for treating various organic pollutants due to less excessive sludge and recyclable energy, especially, good performance in removal of poisonous, harmful and refractory pollutants. However, the treatment rate of anaerobic biological process is usually relatively low. Redox mediators can improve the electron transfer rate in the redox process through continuous oxidation and reduction, promoting anaerobic degradation of pollutants. Quinones and humic acids are frequently used as redox mediators, which have achieved certain effects in catalytically enhancing the degradation of refractory pollutants. The characteristics and mechanism of redox mediators are discussed in this study, and their enhancement effects on anaerobic decolorization of azo dyes, denitrification and anaerobic degradation of polychlorinated biphenyls are summarized. Moreover, the future research direction of redox media is also proposed.

参考文献

[1] Alvarez L H, Perez-Cruz M A, Rangel-Mendez J R, et al. Immobilized redox mediator on metal-oxides nanoparticles and its catalytic effect in a reductive decolorization process[J]. Journal of Hazardous Materials, 2010, 184(1-3):268-272.
[2] 李丽华. 聚吡咯固定化介体强化偶氮染料和硝基化合物厌氧生物转化[D]. 大连:大连理工大学, 2008. Li Lihua. Enhancement of azo dyes and nitro compounds anaerobic biotransformation using a redox mediator immobilized by polypyrrole[D]. Dalian:Dalian University of Technology, 2008.
[3] 康丽, 郭建博, 李洪奎, 等. 氧化还原介体催化强化偶氮染料脱色研究进展[J]. 河北工业科技, 2010, 27(6):447-450. Kang Li, Guo Jianbo, Li Hongkui, et al. Research advance of catalytic effect of redox mediator in azo dye decolorization process[J]. Hebei Industrial Science and Technology, 2010, 27(6):447-450.
[4] Van der Zee F P, Bisschops I A, Lettinga G, et al. Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes[J]. Environmental Science and Technology, 2003, 37(2):402-408.
[5] 廉静, 许志芳, 赵丽君, 等. 固定化氧化还原介体加速亚硝酸盐生物反硝化作用[J]. 环境工程学报, 2012, 6(6):1805-1809. Lian Jing, Xu Zhifang, Zhao Lijun, et al. Biological catalyzing denitrification of nitrite by immobilized redox mediator[J]. Chinese Journal of Environmental Engineering, 2012, 6(6):1805-1809.
[6] Workman D J, Fredrickson J K, Truex M J, et al. Microbial reduction of vitamin B12 by Shewanella alga strain BrY with subsequent transformation of carbon tetrachloride[J]. Environmental Science and Technology, 1997, 31(8):2292-2297.
[7] Curtis G P, Reinhard M. Reductive dehalogenation of hexachloroethane, carbon tetrachloride, and bromoform by anthrahydroquinone disulfonate and humic acid[J]. Environmental Science and Technology, 1994, 28(13):2393-2401.
[8] 王竞, 吕红. 新型介体强化污染物生物还原[C]. 北京:科学出版社, 2013:2. Wang Jing, Lü Hong. New mediators enhance biological reduction of pollutants C]. Beijing:Science Press, 2013:2.
[9] van der Zee F P, Cervantes F J, Impact and application of electron shuttles on the redox (bio) transformation of contaminants:A review[J]. Biotechnology Advances, 2009, 27(3):256-277.
[10] Salati S, Papa G, Adani F. Perspective on the use of humic acids from biomass as natural surfactants for industrial applications[J]. Biotechnology Advances, 2011, 29(6):913-922.
[11] 袁英, 何小松, 席北斗, 等. 腐殖质氧化还原和电子转移特性研究进展[J]. 环境化学, 33(12):2048-2057. Yuan Ying, He Xiaosong, Xi Beidou, et al. Research progress on the redox and electron transfer capacity of humic substances[J]. Environmental Chemistry, 33(12):2048-2057.
[12] Martinez C M, Alvarez L H, Celis L B, et al. Humus-reducing microorganisms and their valuable contribution in environmental processes[J]. Applied Microbiology and Biotechnology, 2013, 97(24):10293-10308.
[13] Ratasuk N, Nanny M. Characterization and quantification of reversible redox sites in humic substances[J]. Environmental Science and Technology, 2007, 41(22):7844-7850.
[14] Leboda R, Łodyga A, Gierak A. Carbon adsorbents as materials for chromatography I. Gas chromatography[J]. Materials Chemistry and Physics, 1997, 51(3):216-232.
[15] Pereira M F R, Soares S F, Órfāo J J M, et al. Adsorption of dyes on activated carbons:influence of surface chemical groups[J]. Carbon, 2003, 41(4):811-821.
[16] Mezohegyi G, Kolodkin A, Castro U I, et al. Effective anaerobic decolorization of azo dye acid orange 7 in continuous upflow packed-bed reactor using biological activated carbon system[J]. Industrial and Engineering Chemistry Research, 2007, 46(21):6788-6792.
[17] 邓尧, 黄肖容, 邬晓龄. 氧化石墨烯复合材料的研究进展[J]. 材料导报, 2012, 26(15):84-87. Deng Yao, Huang Xiaorong, Wu Xiaoling. Review on graphene oside composities[J]. Materials Review, 2012, 26(15):84-87.
[18] 黄倩雯, 楚英豪. 氧化石墨烯性质及其应用前景[J]. 四川化工, 2017, (6):30-32. Huang Qianwen, Chu Yinghao. The properties of graphenen oxide and its application prospects[J]. Sichuan Chemical Industry, 2017, (6):30-32.
[19] 朱军勇, 王琼柯, 许欣, 等. 固定化溶菌酶的氧化石墨烯/聚醚砜杂化超滤膜制备及抗菌性能研究[J].中国工程科学, 2014, 16(7):23-29. Zhu Junyong, Wang Qiongke, Xu Xin, et al. Preparation and antibacterial property of polyethersulfone hybrid ultrafiltration membrane containing GO immobilized by lysozyme[J]. China Engineering Science, 2014, 16(7):23-29.
[20] 陈延明, 张华雨, 赵丽君, 等. 氧化还原介体在环境治理中应用研究进展[J]. 河北工业科技, 2013, 30(4):266-271. Chen Yanming, Zhang Huayu, Zhao Lijun, et al. Development and application of redox mediators for envrionmental protecting[J]. Hebei Industrial Science and Technology, 2013, 30(4):266-271.
[21] 平佳芃, 许志芳, 郭延凯, 等. 固定化氧化还原介体加速Escherichia coli BL21还原Cr(Ⅵ)的影响因素研究[J]. 河北科技大学学报, 2017, 38(5):493-498. Ping Jiafan, Xu Zhifang, Guo Yankai, et al. Reaserrch of the influencing factors of the immobilized redox mediators accelerating Cr(VI) reduction by Escherichia coli BL21[J]. Journal of Hebei University of Science and Technology, 2017, 38(5):493-498.
[22] Mezohegyi G, Gon alves F, órfão J J M, et al. Tailored activated carbons as catalysts in biodecolourisation of textile azo-dyes[J]. Applied Catalysis B:Environmental, 2010, 94(1):179-185.
[23] Colunga A, Rangel-Mendez J R, Celis L B, et al. Graphene oxide as electron shuttle for increased redox conversion of contaminants under methanogenic and sulfatereducing conditions[J]. Bioresource Technology, 2015, 175:309-314.
[24] Wang J, Wang D, Liu G, et al. Enhanced nitrobenzene biotransformation by graphene-anaerobic sludge composite[J]. Journal of Chemical Technology and Biotechnology, 2014, 89(5):750-755.
[25] Huang J, Chu S, Chen J, et al. Enhanced reduction of an azo-dye using henna plant biomass as a solid-phase electron donor, carbon source and redox mediator[J]. Bioresource Technology, 2014, 161:465-468.
[26] 吕红, 张甜甜, 张海坤, 等. 新型介体催化难降解污染物厌氧生物还原[J]. 环境科学与技术, 2016(1):7-12. Lü Hong, Zhang Tiantian, Zhang Haikun, et al. Anaerobic bioreduction of recalcitrant pollutants catalyzed by new types of redox mediators[J]. Environmental Science and Technology, 2016(1):7-12.
[27] Canstein H V, Ogawa J, Shimizu S, et al. Secretion of flavins by Shewanella species and their role in extracellular electron transfer[J]. Applied and Environmental Microbiology, 2008, 74(3):615-623.
[28] Nevin K P, Lovley D R. Mechanisms for accessing insoluble Fe(iii) oxide during dissimilatory Fe(iii) reduction by geothrix fermentans[J]. Applied and Environmental Microbiology, 2002, 68(5):2294-2299.
[29] van der Zee F P, Lettinga G, Field J A. The role of (auto) catalysis in the mechanism of an anaerobic azo reduction[J]. Water Science and Technology, 2000, 42(5/6):301-308.
[30] 张隆. 酸性偶氮染料还原产物催化强化偶氮染料生物脱色[D]. 大连:大连理工大学, 2008. Zhang Long. Enhanced biological decolourzation of azo dyes by products reduced from acid azo dyes[D]. Dalian:Dalian University of Technology, 2008.
[31] 苏妍彦, 王竞, 周集体, 等. 蒽醌染料中间体催化强化偶氮染料生物脱色[J]. 环境科学, 2008, 29(7):1986-1991. Su Yanyan, Wang Jing, Zhou Jiti, et al. Enhanced bio-decolourization of azo dyes by the catalysis of anthraquinone dyes intermediators[J]. Environmental Science, 2008, 29(7):1986-1991.
[32] 崔姗姗, 徐宏勇, 周思辰, 等. 氧化还原介体对偶氮染料厌氧脱色的影响[J]. 哈尔滨理工大学学报, 2008, 13(2):103-106. Cui Shanshan, Xu Hongyong, Zhou Sichen, et al. Effect of different redox mediator on the anaerobic reduction of azo dyes[J]. Journal of Harbin University of Science and Technology, 2008, 13(2):103-106.
[33] 谭靓, 宁淑香, 王颖. 生物强化-氧化还原介体联合强化高盐偶氮染料废水生物脱色的研究[J]. 辽宁化工, 201l, 40(8):800-804. Tan Liang, Ning Shuxiang, Wang Ying. Study on biodecolorization of high-salt azo dye wastewater with the combination of bioaugmentation and redox mediator catalysis[J]. Liaoning Chemical Industry, 2011, 40(8):800-804.
[34] Kudlich M, Keck A, Klein J, et al. Localization of the enzyme system involved in anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6 and effect of artificial redox mediators on the rate of azo dye reduction[J]. Applied and Environmental Microbiology, 1997, 63(9):3691-3694.
[35] 周觅, 柳广飞, 周集体. 醌还原酶-醌类化合物对偶氮染料脱色的作用[J]. 环境科学, 2009, 30(6):1810-1816. Zhou Mi, Liu Guangfei, Zhou Jiti. Decolorization of azo dyes using quinone reductase and quinoid compounds[J]. Environmental Science, 2009, 30(6):1810-1816.
[36] 司伟磊, 吕红, 周集体, 等. 聚氨酯泡沫固定化蒽醌强化偶氮染料生物脱色的研究[J]. 高校化学工程学报, 2010, 24(3):498-502. Si Weilei, Lü Hong, Zhou Jiti, et al. enhanced biodecolorization of azo dyes by using anthraquinone immobilized in polyurethane foam[J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(3):498-502.
[37] 李芳, 陈一宁, 李盈, 等. 氧化还原介体厌氧催化酸性红B生物脱色研究[J]. 资源节约与环保, 2014(5):113-113. Li Fang, Chen Yining, Li Ying, et al. Anaerobic decolorization of acid red B catalyzed by redox mediator[J]. Journal of Resource Conservation and Environmental Protection, 2014(5):113-113.
[38] Guo J, Li K, Yang J, et al. Study on a novel non-dissolved redox mediator catalyzing biological denitrification (RMBDN) technology[J]. Bioresource Technology, 2010, 101(11):4238-4241.
[39] 李海波, 廉静, 郭延凯, 等. 氧化还原介体催化强化Paracoccus versutus菌株GW1反硝化特性研究[J]. 环境科学, 2012, 33(7):2458-2463. Li Haibo, Lian Jing, Guo Yankai, et al. Biocatalyst of redox mediators on the denitrification by Paracoccus versutus strain GW1[J]. Environmental Science, 2012, 33(7):2458-2463.
[40] 苑宏英, 孙烨怡, 李原玲, 等. 不同碳源对低温投加氧化还原介体污水生物反硝化脱氮过程的影响[J]. 化工进展,2018, 37(2):783-788. Yuan Hongying, Sun Yeyi, Li Yuanling, et al. Effects of different carbon sources on biological denitrification of wastewater at low temperature with adding redox mediator[J]. Chemical Industry and Engineering Progress, 2018, 37(2):783-788.
[41] 许晴, 侯正浩, 田秀蕾, 等. 醌基功能型高分子生物载体(PET-AQS)制备及催化生物反硝化特性研究[J]. 环境科学, 2015, 36(4):1374-1378. Xu Qing, Hou Zhenhao, Tian Xiulei, et al. Preparation and characterization of quinone functional polymer biocarrier (PET-AQS) for biodenitrification catalysis[J]. Environmental Science, 2015, 36(4):1374-1378.
[42] 杜海峰, 赵丽君, 郭延凯, 等. 醋酸纤维素包埋非水溶性介体催化强化反硝化特性研究[J]. 环境工程学报, 2014, 8(6):2417-2422. Du Haifeng, Zhao Lijun, Guo Yankai, et al. Accelerating characteristic of non-dissolved redox mediators immobilized by cellulose acetate (CA) on denitrification[J]. Chinese Journal of Environmental Engineering, 2014, 8(6):2417-2422.
[43] Assaf-Anid N, Nies L, Vogel T M. Reductive dechlorination of a polychlorinated biphenyl congener and hexachloro-benzene by vitamin B12[J]. Applied and Environmental Microbiology, 1992, 58(3):1057-1060.
[44] 刘嘉裕, 肖文丰, 鲁莉萍, 等. 维生素B12对脱氯功能蓝藻降解2, 4, 4'-三氯联苯的促进作用研究[J]. 环境科学, 2014, 35(8):3162-3168. Liu Jiayu, Xiao Wenfeng, Lu Liping, et al. Promotion effects of vitamin B12 on the degradation of 2,4,4'-trichlorobiphenyl by Nostoc PD-2[J]. Environmental Science, 2014, 35(8):3162-3168.
[45] Chen L, Gao Z, Wang Z. Enhanced dechlorination of 2, 2', 4, 4', 5, 5'-hexachlorobiphenyl in water-sediment mixture by adding anthraquinone-2, 6-disulfonic acid[J]. Journal of Soils and Sediments, 2016, 16(1):318-323.
[46] 陈蕾. 天然有机质介导的多氯联苯环境转化与降解机制[D]. 杭州:浙江大学, 2012. Chen Lei. Mechanism study of the environmental transformation and degradation of PCBs mediated by NOM[D]. Hangzhou:Zhejiang University, 2012.
[47] Zhang D, Zhang N, Yu X, et al. Effect of humins from different sediments on microbial degradation of 2,2',4,4', 5,5'-hexachlorobiphenyl (PCB153), and their polyphasic characterization[J]. RSC Advances, 2017, 7(12):6849-6855.
[48] Chen L, Tang X, Shen C, et al. Photosensitized degradation of 2, 4', 5-trichlorobiphenyl (PCB 31) by dissolved organic matter[J]. Journal of Hazard Materials, 2012(201/202):1-6.
[49] Young S K, Qing X L. Fungal laccase-catalyzed degradation of hydroxy polychlorinated biphenyls[J]. Chemosphere, 2004, 56(1):23-30.
[50] Ng I S, Chen T, Lin R, et al. Decolorization of textile azo dye and congo red by an isolated strain of the dissimilatory manganese-reducing bacterium Shewanella xiamenensis, BC01[J]. Applied Microbiology and Biotechnology, 2014, 98(5):2297-2308.
[51] 陈晔, 陈刚, 陈亮, 等. 偶氮染料分子结构对其生物脱色影响的研究进展[J]. 环境科学与技术, 2011, 34(8):65-69. Chen Ye, Chen Gang, Chen Liang, et al. Review of studies on effects of molecular structure on azo dye microbial decolorization[J]. Environmental Science and Technology, 2011, 34(8):65-69.
[52] Guo J, Zhou J, Wang D, et al. Biocalalyst effects of immobilized anthraquinone on the anaerobic reduction of azo dyes by the salt-tolerant bacteria[J]. Water Research, 2007, 41(2):426-432.
[53] Pandey A, Singh P, Iyengar L. Bacterial decolorization and degradation of azo dyes[J]. International Biodeterioration & Biodegradation, 2007, 59(2):73-84.
[54] dos Santos A B D, Bisschops I A E, Cervantes F J, et al. Effect of different redox meditors during thermophilie azo dye reduction by anaerobic grimular sludge and comparative study between mesophilie(30℃) and thermophilie(55℃) treatments for decolourisation of textile wastewaters[J]. Chemosphemere, 2004, 55(9):1149-1157.
[55] Uchimiya M, Stone A T. Reversible redox chemistry of quinones:Impact on biogeochemical cycles[J]. Chemosphere, 2009, 77(4):451-458.
[56] Watanabe K, Manefield M, Lee M, et al. Electron shuttles in biotechnology[J]. Current Opinion in Biotechnology, 2009, 20(6):633-641.
[57] 赵丽君, 马志远, 郭延凯, 等. 氧化还原介体调控亚硝酸盐反硝化特性研究[J]. 环境科学, 2013, 34(9):3520-3525. Zhao Lijun, Ma Zhiyuan, Guo Yankai, et al. Nitrite denitrification characteristics with redox mediator[J]. Environmental Science, 2013, 34(9):3520-3525.
[58] Becker J G, Freedman D L. Use of cyanocobalamin to enhance anaerobic biodegradation of chloroform[J]. Environmental Science and Technology, 1994, 28(11):1942-1949.
文章导航

/