科技人文

沃尔夫物理学奖与量子信息的发展

  • 尹沛 ,
  • 朱慧涓
展开
  • 1. 中国科学院自然科学史研究所, 北京 100190;
    2. 中国科学院大学, 北京 100049;
    3. 首都师范大学物理系, 北京 100048
尹沛,博士研究生,研究方向为物理学史,电子信箱:5985@cnu.edu.cn

收稿日期: 2019-01-10

  修回日期: 2019-03-06

  网络出版日期: 2019-11-15

基金资助

首都师范大学-德国马普学会合作项目;北京市教育委员会科技计划一般项目(KM201810028005)

Wolf Prize in Physics and the development of quantum information

  • YIN Pei ,
  • ZHU Huijuan
Expand
  • 1. The Institute for the History of Natural Science, China Academy of Sciences, Beijing 100010, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Physics Department, Capital Normal University, Beijing 100048, China

Received date: 2019-01-10

  Revised date: 2019-03-06

  Online published: 2019-11-15

摘要

沃尔夫物理学奖成立于1976年,是世界物理学界最高成就奖之一,获奖者中有不少后来获得诺贝尔物理学奖。通过介绍2010年、2013年和2018年沃尔夫物理学奖获奖者在量子信息领域的突破性成果,展示了该领域近年来的发展轨迹,并对比了这3届获奖者不同的研究思路。

本文引用格式

尹沛 , 朱慧涓 . 沃尔夫物理学奖与量子信息的发展[J]. 科技导报, 2019 , 37(21) : 110 -116 . DOI: 10.3981/j.issn.1000-7857.2019.21.011

Abstract

The 2018 Wolf Prize in Physics was awarded to Charles Bennett and Gilles Brassard for their contributions to quantum information. The Wolf Prize in Physics has been awarded annually since 1976, which is the most important prize in the physics world. Many of the laureates have also won the Noble Prize in Physics. This article demonstrates the development footprint of quantum information through the breakthroughs of those laureates of Wolf Prize in Physics in 2010, 2013 and 2018, and compares the different research ideas between them.

参考文献

[1] Wolf Foundation[EB/OL].[2018-12-20]. http://www.wolffund.org.il/index.php?language=eng.
[2] Piran T. Wolf Prize in physics[M]. Singapore:World Scientific Publishing Company, 2016.
[3] 2018 Wolf Prize in science and arts[EB/OL].[2018-02-14]. https://research.mit.edu/2018-wolf-prize-sciencesand-arts.
[4] Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete[J]. Physical Review, 1935, 47:777-780.
[5] Bell S J. On the Einstein-Posolsky-Rosen paradox[J]. Physics, 1964(1):195-200.
[6] Clauser F J, Horne A M, Shimony A, et al. Proposed experiment to test local Hidden-Variable theories[J]. Physical Review Letters, 1969, 23(15):880-884.
[7] Clauser F J, Horne A M. Experimental consequences of objective local theories[J]. Physical Review D, 1974, 10(2):526-535.
[8] Greenberger D, Horne M A, Zeilinger A. Going beyond Bell's theorem[C]//Kafatos M eds. Bell's Theorem, Quantum Theory, and Conceptions of the Universe. Dordrecht:Springer, 1989.
[9] Clauser F J. Bellrne M A, Zeilinger A. Going beyond Bell's theorem[C]//Kafatos M eds. Bell's Quantum Speakables. Dordrecht:Springer, 2017:480.
[10] Cirac I J, Zoller P. Quantum computations with cold trapped ions[J]. Physical Review Letters, 1995, 74:4091-4094.
[11] Shannon C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3):379-423.
[12] Bennett C. Rolf Landauer(1927-1999)[J]. Science:New Series, 1999, 284(5422):1940.
[13] 王凯宁. 从粒子到信息:统计物理与量子信息基础研究的关联与进展[J]. 科学技术哲学研究, 2017, 34:31-35.
[14] Bromberg J. Oral history interviews-John Clauser[EB/OL].[2018-12-20]. https://www.aip.org/history-programs/niels-bohr-library/oral-histories/25096.
[15] Clauser F J. Philosophical motivations of Bell's theorem and the experimenter's problem[D]. Lawrence:Lawrence Berkeley National Laboratory, 1976.
[16] 安东·泽林格. 量子物理学的实验与哲学基础[EB/OL]. (2017-02-24). http://www.cctv.com/lm/131/61/85875.html.
[17] 万赟. 2017年信息科学热点回眸[J]. 科技导报, 2018, 36(1):91-97.
文章导航

/