专题:康复辅具与康复工程

可穿戴步态辅助技术在康复养老领域中的应用

  • 陶帅 ,
  • 吕泽平 ,
  • 谢海群
展开
  • 1. 大连大学大连市智慧医疗与健康重点实验室, 大连 116622;
    2. 国家康复辅具研究中心附属康复医院, 北京市老年功能障碍康复辅助技术重点实验室, 民政部人体运动分析与康复技术重点实验室, 北京 100176;
    3. 佛山市第一人民医院神经内科, 佛山 528000
陶帅,副教授,研究方向为智慧医疗与健康,电子信箱:taoshuai@dlu.edu.cn

收稿日期: 2019-01-10

  修回日期: 2019-07-25

  网络出版日期: 2019-11-30

基金资助

国家重点研发计划项目(SQ2018YFC200112-02)

Application of wearable gait-assist technology in the fields of rehabilitation and elderly care

  • TAO Shuai ,
  • Lü Zeping ,
  • XIE Haiqun
Expand
  • 1. Dalian Key Laboratory of Smart Medical and Health, Dalian University, Dalian 116622, China;
    2. China Rehabilitation Hospital, National Research Center for Rehabilitation Technical Aids;Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability;Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, Beijing 100176, China;
    3. Department of Neurology, Foshan Hospital Affiliated to Sun Yat-sen University, Foshan 528000, China

Received date: 2019-01-10

  Revised date: 2019-07-25

  Online published: 2019-11-30

摘要

步态作为一种个体的特异性生物学信息,应用于医疗健康、运动表现和生物识别等领域。本文综述了当前的步态检测与分析技术的研究进展,及其在康复养老领域的应用。未来伴随不同疾病队列研究的步态数据累积与疾病预测模型的建立,步态检测评估将在康复养老领域具有更重要的应用价值和广泛的应用前景。关键词步态;可穿戴设备;康复;养老;智慧医疗

本文引用格式

陶帅 , 吕泽平 , 谢海群 . 可穿戴步态辅助技术在康复养老领域中的应用[J]. 科技导报, 2019 , 37(22) : 19 -25 . DOI: 10.3981/j.issn.1000-7857.2019.22.003

Abstract

The gait is one part of an individual's specific biological information, in the fields of medical health, athletic performance and biometrics. The wearable gait detecting system is a comprehensive system integrating hardware, software, data processing analysis and gait algorithm, and is easy to operate and to acquire the gait information of the subject in real-time and with high precision. It can be effectively used in the evaluation of the rehabilitation, the abnormal gait monitoring and the early warning of the elderly in line with the needs of the rehabilitation and pension field in the context of our aging society. With the accumulation of the gait data and the establishment of disease prediction models in different disease cohort studies, the gait detection and evaluation will find more important applications with broad application prospects in the field of the rehabilitation and the elderly care service.

参考文献

[1] Minetti A E. The biomechanics of skipping gaits:A third locomotion paradigm[J]. Proceedings:Biological Sciences, 1998, 265(1402):1227-1235.
[2] Takakusaki K. Functional neuroanatomy for posture and gait control[J]. Journal of Movement Disorders, 2017, 10(1):1-17.
[3] Verghese J, Ambrose A F, Lipton R B, et al. Neurological gait abnormalities and risk of falls in older adults[J]. Journal of Neurology, 2010, 257(3):392-398.
[4] Levine D, Richards J, Whittle M. Whittle's gait analysis[M]. 5th ed. New York:Churchill Livingstone/Elsevier, 2012.
[5] Oberg T, Karsznia A, Oberg K. Joint angle parameters in gait:Reference data for normal subjects, 10-79 years of age[J]. Journal of Rehabilitation Research and Development, 1994, 31(3):199-213.
[6] Oberg T, Karsznia A, Oberg K. Basic gait parameters:reference data for normal subjects, 10-79 years of age[J]. Journal of Rehabilitation Research and Development, 1993, 30(2):210-223.
[7] 杰奎琳P, 朱迪丝M. 步态分析:正常和病理功能[M]. 姜淑云, 译. 上海:上海科学技术出版社, 2017.
[8] Auvinet E, Multon F, Meunier J. Gait analysis with multiple depth cameras[C]. International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, Piscataway NJ:IEEE, 2011:6265-6268.
[9] Jensen R R, Paulsen R R, Larsen R. Analysis of gait using a treadmill and a time-of-flight camera[C]//Workshop on Dynamic 3D Imaging. Berlin, Heidelberg:Springer, 2009:154-166.
[10] Han J, Bhanu B. Human activity recognition in thermal infrared imagery[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)-Workshops. Piscataway NJ:IEEE, 2005:17.
[11] Webster K E, Wittwer J E, Feller J A. Validity of the GAITRite® walkway system for the measurement of averaged and individual step parameters of gait[J]. Gait and Posture, 2005, 22(4):317-321.
[12] 陶帅, 吕泽平, 田秋娇, 等. 步态检测设备联合量表评估认知功能和跌倒风险的应用初探[J]. 中国老年保健医学, 2017, 5(15):26-28.
[13] Tao S, Zhang X, Cai H, et al. Gait based biometric personal authentication by using MEMS inertial sensors[J]. Journal of Ambient Intelligence and Humanized Computing, 2018, doi:10.1007/s12652-018-0880-6.
[14] Bernhard F P, Sartor J, Bettecken K, et al. Wearables for gait and balance assessment in the neurological ward-study design and first results of a prospective cross-sectional feasibility study with 384 inpatients[J]. BMC Neurology, 2018, 18(1):114.
[15] Iijima M, Mitoma H, Uchiyama S, et al. Long-term monitoring gait analysis using a wearable device in daily lives of patients with parkinson's disease:The efficacy of selegiline hydrochloride for gait disturbance[J]. Frontiers in Neurology, 2017, 8:542.
[16] Carpinella I, Cattaneo D, Bonora G, et al. Wearable sensor-based biofeedback training for balance and gait in parkinson disease:A pilot randomized controlled trial[J]. Archives of Physical Medicine and Rehabilitation, 2017, 98(4):622-630.
[17] Balaban B, Tok F. Gait disturbances in patients with stroke[J]. PMR, 2014, 6(7):635-642.
[18] Wuest S, Masse F, Aminian K, et al. Reliability and validity of the inertial sensor-based timed "up and go" test in individuals affected by stroke[J]. Journal of Rehabilitation Research and Development, 2016, 53(5):599-610.
[19] 陶帅, 韩芳, 吕泽平, 等. 步态在老年认知功能障碍中的研究与应用进展[J]. 中国老年保健医学, 2017, 5(15):15-18.
[20] Schliessmann D, Nisser M, Schuld C, et al. Trainer in a pocket-proof-of-concept of mobile, real-time, foot kinematics feedback for gait pattern normalization in individuals after stroke, incomplete spinal cord injury and elderly patients[J]. Journal of Neuroengineering and Rehabilitation, 2018, 15(1):44.
[21] Willy R W, Buchenic L, Rogacki K, et al. In-field gait retraining and mobile monitoring to address running biomechanics associated with tibial stress fracture[J]. Scandinavian Journal of Medicine and Science in Sports, 2016, 26(2):197-205.
[22] Mahlknecht P, Kiechl S, Bloem B R, et al. Prevalence and burden of gait disorders in elderly men and women aged 60-97 years:A population-based study[J]. PLoS One, 2013, 8(7):e69627.
[23] Kwon M S, Kwon Y P, Park Y S, et al. Comparison of gait patterns in elderly fallers and non-fallers[J]. Technology and Health Care, 2018, 26(Suppl 1):427-436.
[24] van Schooten K S, Pijnappels M, Rispens S M, et al. Daily-life gait quality as predictor of falls in older people:A 1-year prospective cohort study[J]. PLoS One, 2016, 11(7):e0158623.
[25] Eskofier B, Lee S, Baron M, et al. An overview of smart shoes in the internet of health things:Gait and mobility assessment in health promotion and disease monitoring[J]. Applied Sciences, 2017, 7(10):986.
[26] Lee H J, Lee S, Chang W H, et al. A wearable hip assist robot can improve gait function and cardiopulmonary metabolic efficiency in elderly adults[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(9):1549-1557.
文章导航

/