[1] 世界卫生组织. 世界残疾报告[EB/OL].[2018-12-14]. https://www.who.int/disabilities/world_report/2011/report/zh.
[2] 崔斌, 陈功, 郑晓瑛. 中国残疾人口致残原因分析[J]. 人口与发展, 2009(5):51-56.
[3] 赵燕潮. 中国残联发布我国最新残疾人口数据[J]. 残疾人研究, 2012(A01):11.
[4] 义肢[EB/OL].[2018-04-13]. https://zh.wikipedia.org/w/index.php?title=E7%BE%A9%E8%82%A2&oldid=49126048.
[5] 十一五规划[EB/OL]. (2018-11-23)[2018-12-14]. https://zh.wikipedia.org/w/index.php?title=%E5%8D%81%E4%B8%80%E4%BA%94%E8%A7%84%E5%88%92&oldid=52127177.
[6] 十二五规划[EB/OL]. (2018-09-25)[2018-12-14]. https://zh.wikipedia.org/w/index.php?title=%E5%8D%81%E4%BA%8C%E4%BA%94%E8%A7%84%E5%88%92&oldid=51414721.
[7] Chan A, Kwok E, Bhuanantanondh P. An assessment platform for upper limb myoelectric prothesis[C]//CMBES Proceedings. Ottawa:CMBES, 2018.
[8] Lei M, Wang Z Z. The study advances and prospects of processing surface EMG signal in prosthesis control[J]. Chinese Journal of Medical Instrumentation, 2001, 25(3):156-160.
[9] Lee S, Sankai Y. Power assist control for walking aid with HAL-3 based on EMG and impedance adjustment around knee joint[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002. Piscataway NJ:IEEE, 2002, 2:1499-1504.
[10] Khokhar Z O, Xiao Z G, Menon C. Surface EMG pattern recognition for real-time control of a wrist exoskeleton[J]. Biomedical Engineering Online, 2010, 9(1):41.
[11] O'Neill A, Petrie H, Lacey G, et al. Establishing initial user requirements for PAM-AID:A mobility and support device to assist frail and elderly visually impaired persons[M]//Improving the Quality of Life for the European Citizen. Clifton VA:IOS Press, 1998:292-295.
[12] Mori H, Kotani S, Kiyohiro N. A robotic travel aid "HITOMI"[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94). Piscataway NJ:IEEE, 1994, 3:1716-1723.
[13] Mori H, Kotani S. A Robotic Travel Aid for the Blind[M]//Robotics Research. London:Springer, 1998:237-245.
[14] Kotani S, Nakata T, Hideo M. A strategy for crossing of the robotic travel aid "Harunobu"[C]//2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001. Piscataway NJ:IEEE, 2001, 2:668-673.
[15] Shoval S, Ulrich I, Borenstein J. NavBelt and the GuideCane[J]. IEEE Robotics and Automation Magazine, 2003, 10(1):9-20.
[16] Shim I, Yoon J. A human robot interaction system "RoJi"[C]//2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2003. Piscataway NJ:IEEE, 2003, 2:723-728.
[17] Schaeffer C, May T. Care-o-bot-a system for assisting elderly or disabled persons in home environments[C]//Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society. Piscataway NJ:IEEE, 1998, doi:10.1109/IECON.1998.724115.
[18] Nemoto Y, Egawa S, Koseki A, et al. Power-assisted walking support system for elderly[C]//Proceedings of the 20th Annual International Conference of the IEEE.Piscataway NJ:IEEE, 1998, 5:2693-2695.
[19] Egawa S, Nemoto Y, Fujie M G, et al. Power-assisted walking support system with imbalance compensation control for hemiplegics[C]//Proceedings of the First Joint BMES/EMBS Conference, 1999. Piscataway NJ:IEEE, 1999, 1:635.
[20] Wasson G, Gunderson J, Graves S, et al. An assistive robotic agent for pedestrian mobility[C]//Proceedings of the Fifth International Conference on Autonomous Agents. New York:ACM, 2001:169-173.
[21] Dubowsky S, Genot F, Godding S, et al. PAMM-A robotic aid to the elderly for mobility assistance and monitoring:A "helping-hand" for the elderly[C]//IEEE International Conference on Robotics and Automation, 2000. Piscataway NJ:IEEE, 2000, 1:570-576.
[22] Yu H, Spenko M, Dubowsky S. An adaptive shared control system for an intelligent mobility aid for the elderly[J]. Autonomous Robots, 2003, 15(1):53-66.
[23] Hirata Y, Hara A, Kosuge K. Passive-type intelligent walking support system "RT Walker"[C]//2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004. Piscataway NJ:IEEE, 2004, 4:3871-3876.
[24] Kai Y, Tanioka T, Inoue Y, et al. A walking support/evaluation machine for patients with parkinsonism[J]. The Journal of Medical Investigation, 2004, 51(1-2):117-124.
[25] Shim H M, Lee E H, Shim J H, et al. Implementation of an intelligent walking assistant robot for the elderly in outdoor environment[C]//9th International Conference on Rehabilitation Robotics, 2005. Piscataway NJ:IEEE, 2005:452-455.
[26] Xiong G, Gong J, Gao J, et al. Optimum design and simulation of a mobile robot with standing-up devices to assist elderly people and paraplegic patients[C]//IEEE International Conference on Robotics and Biomimetics, 2006. Piscataway NJ:IEEE, 2006:807-812.
[27] Lacey G J, Rodriguez-Losada D. The evolution of guido[J]. IEEE Robotics and Automation Magazine, 2008, 15(4):75-83.
[28] Nejatbakhsh N, Kosuge K. User-environment based navigation algorithm for an omnidirectional passive walking aid system[C]//9th International Conference on Rehabilitation Robotics, 2005. Piscataway NJ:IEEE, 2005:178-181.
[29] Alwan M, Rajendran P J, Ledoux A, et al.[C]//Proceedings of AAAI Symposium. 2005.
[30] Merlet J P. Preliminary design of ANG, a low-cost automated walker for elderly[M]//New Trends in Mechanism Science. Dordrecht:Springer, 2010:529-536.
[31] Zhou W, Xu L, Yang J. An intent-based control approach for an intelligent mobility aid[C]//2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010). Piscataway NJ:IEEE, 2010, 2:54-57.
[32] Ye J, Huang J, He J, et al. Development of a widthchangeable intelligent walking-aid robot[C]//2012 International Symposium on Micro-NanoMechatronics and Human Science (MHS). Piscataway NJ:IEEE, 2012:358-363.
[33] Mou W H, Chang M F, Liao C K, et al. Context-aware assisted interactive robotic walker for parkinson's disease patients[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway NJ:IEEE, 2012:329-334.
[34] Takanashi H, Miyake Y. Co-emergence robot WalkMate and its support for elderly people[J]. Transactions of the Society of Instrument and Control Engineers, 2003, 39(1):74-81.
[35] Jiang S Y, Lin C Y, Huang K T, et al. Shared control design of a walking-assistant robot[J]. IEEE Transactions on Control Systems Technology, 2017, 25(6):2143-2150.
[36] Lee G, Ohnuma T, Chong N Y. Design and control of JAIST active robotic walker[J]. Intelligent Service Robotics, 2010, 3(3):125-135.
[37] Yang D, Zhou M, Huang J, et al. Aided sit to stand transfer by assistive robot and wearable sensors[C]//2nd International Conference on Advanced Robotics and Mechatronics (ICARM), 2017. Piscataway NJ:IEEE, 2017:239-244.
[38] Jun H G, Chang Y Y, Dan B J, et al. Walking and sitto-stand support system for elderly and disabled[C]//2011 IEEE International Conference on Rehabilitation Robotics (ICORR). Piscataway NJ:IEEE, 2011:1-5.
[39] Huang J, Di P, Fukuda T, et al. Motion control of omnidirectional type cane robot based on human intention[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008. Piscataway NJ:IEEE, 2008:273-278.
[40] Di P, Huang J, Sekiyama K, et al. Motion control of intelligent cane robot under normal and abnormal walking condition[C]//RO-MAN, 2011 IEEE. Piscataway NJ:IEEE, 2011:497-502.
[41] Yan Q, Huang J, Luo Z. Human-robot coordination stability for fall detection and prevention using cane robot[C]//2016 International Symposium on Micro-Nano Mechatronics and Human Science (MHS). Piscataway NJ:IEEE, 2016:1-7.
[42] 侯增广, 赵新刚, 程龙, 等. 康复机器人与智能辅助系统的研究进展[J]. 自动化学报, 2016, 42(12):1765-1779.
[43] Lionis G S, Kyriakopoulos K J. A laser scanner based mobile robot SLAM algorithm with improved convergence properties[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002. Piscataway NJ:IEEE, 2002, 1:582-587.
[44] Molton N, Se S, Brady J M, et al. A stereo vision-based aid for the visually impaired[J]. Image and Vision Computing, 1998, 16(4):251-264.
[45] Moeslund T B, Granum E. A survey of computer visionbased human motion capture[J]. Computer Vision and Image Understanding, 2001, 81(3):231-268.
[46] Dalal N, Triggs B, Schmid C. Human detection using oriented histograms of flow and appearance[C]//European Conference on Computer Vision. Berlin, Heidelberg:Springer, 2006:428-441.
[47] Liu H, Dong N, Zha H. Omni-directional vision based human motion detection for autonomous mobile robots[C]//2005 IEEE International Conference on Systems, Man and Cybernetics. Piscataway NJ:IEEE, 2005, 3:2236-2241.
[48] Mehta D, Sridhar S, Sotnychenko O, et al. Vnect:Realtime 3d human pose estimation with a single rgb camera[J]. ACM Transactions on Graphics, 2017, 36(4):44.
[49] Huang J, Yu X, Wang Y, et al. An integrated wireless wearable sensor system for posture recognition and indoor localization[J]. Sensors, 2016, 16(11):1825.
[50] Ryu S, Lee P, Chou J B, et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion[J]. ACS Nano, 2015, 9(6):5929-5936.
[51] Park J J, Hyun W J, Mun S C, et al. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring[J]. ACS Applied Materials & Interfaces, 2015, 7(11):6317-6324.
[52] Huang J, Xu W, Mohammed S, et al. Posture estimation and human support using wearable sensors and walkingaid robot[J]. Robotics and Autonomous Systems, 2015, 73:24-43.
[53] Prutchi D. A high-resolution large array(HRLA) surface EMG system[J]. Medical Engineering & Physics, 1995, 17(6):442-454.
[54] Lin C T, Liao L D, Liu Y H, et al. Novel dry polymer foam electrodes for long-term EEG measurement[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(5):1200-1207.
[55] Supuk T G, Skelin A K, Cic M. Design, development and testing of a low-cost sEMG system and its use in recording muscle activity in human gait[J]. Sensors, 2014, 14(5):8235-8258.
[56] Gandhi V, Prasad G, Coyle D, et al. EEG-based mobile robot control through an adaptive brain-robot interface[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2014, 44(9):1278-1285.
[57] Leeb R, Friedman D, Müller-Putz G R, et al. Selfpaced (asynchronous) BCI control of a wheelchair in virtual environments:A case study with a tetraplegic[J]. Computational Intelligence and Neuroscience, 2007, doi:10.115512007/79642.
[58] Huang D, Qian K, Fei D Y, et al. Electroencephalography (EEG)-based brain-computer interface(BCI):A 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20(3):379-388.
[59] Li Z, Zhao S, Duan J, et al. Human cooperative wheelchair with brain-machine interaction based on shared control strategy[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(1):185-195.
[60] Bostanov V. BCI competition 2003-data sets Ib and IIb:Feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6):1057-1061.
[61] Scherer R, Muller G R, Neuper C, et al. An asynchronously controlled EEG-based virtual keyboard:Improvement of the spelling rate[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6):979-984.
[62] Kaper M, Meinicke P, Grossekathoefer U, et al. BCI competition 2003-data set IIb:Support vector machines for the P300 speller paradigm[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6):1073-1076.
[63] Garrett D, Peterson D A, Anderson C W, et al. Comparison of linear, nonlinear, and feature selection methods for EEG signal classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11(2):141-144.
[64] Schlögl A, Lee F, Bischof H, et al. Characterization of four-class motor imagery EEG data for the BCI-competition 2005[J]. Journal of Neural Engineering, 2005, 2(4):L14.
[65] Chiappa S, Bengio S. HMM and IOHMM modeling of EEG rhythms for asynchronous BCI systems[R]. IDIAP, 2003.
[66] Wakita K, Huang J, Di P, et al. Human-walking-intention-based motion control of an omnidirectional-type cane robot[J]. IEEE/ASME Transactions On Mechatronics, 2013, 18(1):285-296.
[67] Erden M S, Tomiyama T. Human-intent detection and physically interactive control of a robot without force sensors[J]. IEEE Transactions on Robotics, 2010, 26(2):370-382.
[68] Wang Z, Peer A, Buss M. An HMM approach to realistic haptic human-robot interaction[C]//EuroHaptics Conference, 2009 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Piscataway NJ:IEEE, 2009:374-379.
[69] Li Y, Ge S S. Human-robot collaboration based on motion intention estimation[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(3):1007-1014.
[70] Kiguchi K, Hayashi Y. An EMG-based control for an upper-limb power-assist exoskeleton robot[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, 42(4):1064-1071.
[71] Yan Q, Xu W, Huang J, et al. Laser and force sensors based human motion intent estimation algorithm for walking-aid robot[C]//2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems(CYBER). Piscataway NJ:IEEE, 2015:1858-1863.
[72] Xu W, Huang J, Cheng L. A novel coordinated motion fusion-based walking-aid robot system[J]. Sensors, 2018, 18(9):2761.
[73] Wang Z, Peer A, Buss M. An HMM approach to realistic haptic human-robot interaction[C]//EuroHaptics Conference, 2009 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Piscataway NJ:IEEE, 2009:374-379.
[74] Kazi Z, Chen S, Beitler M, et al. Speech and gesture mediated intelligent teleoperation[M]//Assistive Technology and Artificial Intelligence. Berlin, Heidelberg:Springer, 1998:194-210.
[75] Nehal S K, Obheroi R K, Anand A, et al. A navigation device with voice for visually impaired people[M]//Intelligent Communication, Control and Devices. Singapore:Springer, 2018:1369-1380.
[76] Walvekar V, Shetty S T, Shruthi N, et al. Blind hurdle stick:Android integrated voice based intimation via GPS with panic alert system[C]//3rd National Conference on Image Processing, Computing, Communication, Networking and Data Analytics. Piscataway NJ:IEEE, 2018:69.
[77] Han J S, Bien Z Z, Kim D J, et al. Human-machine interface for wheelchair control with EMG and its evaluation[C]//Proceedings of the 25th Annual International Conference of the IEEE. Piscataway NJ:IEEE, 2003, 2:1602-1605.
[78] Moon I, Lee M, Ryu J, et al. Intelligent robotic wheelchair with EMG-, gesture-, and voice-based interfaces[C]//2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003. Piscataway NJ:IEEE, 2003, 4:3453-3458.
[79] Zhang Y Z, Yeh S S. Motion control design for robotic walking support systems using admittance motion command generator[C]//Proceedings of the International MultiConference of Engineers and Computer Scientists. 2011, 2.
[80] Di P, Hasegawa Y, Nakagawa S, et al. Fall detection and prevention control using walking-aid cane robot[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(2):625-637.
[81] Hirata Y, Hara A, Kosuge K. Motion control of passive intelligent walker using servo brakes[J]. IEEE Transactions on Robotics, 2007, 23(5):981-990.
[82] Xu W, Huang J, Wang Y, et al. Reinforcement learningbased shared control for walking-aid robot and its experimental verification[J]. Advanced Robotics, 2015, 29(22):1463-1481.
[83] Han H, Zhang X, Mu X. An approach for fuzzy control of elderly-assistant & walking-assistant robot[C]//2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). Piscataway NJ:IEEE, 2017:263-267.
[84] 徐文霞, 黄剑, 晏箐阳, 等. 兼具柔顺与安全的助行机器人运动控制研究[J]. 自动化学报, 2016, 42(12):1859-1873.
[85] Hirata Y, Muraki A, Kosuge K. Motion control of intelligent passive-type walker for fall-prevention function based on estimation of user state[C]//Proceedings 2006 IEEE International Conference on Robotics and Automation. Piscataway NJ:IEEE, 2006:3498-3503.
[86] Sugaiwa T, Iwata H, Sugano S. Shock absorbing skin design for human-symbiotic robot at the worst case collision[C]//8th IEEE-RAS International Conference on Humanoid Robots, 2008. Piscataway NJ:IEEE, 2008:481-486.
[87] Koganezawa K, Shimizu Y, Inomata H, et al. Actuator with non linear elastic system (ANLES) for controlling joint stiffness on antaonistic driving[C]//IEEE International Conference on Robotics and Biomimetics, 2004. Piscataway NJ:IEEE, 2004:51-55.
[88] Yamada Y, Hirasawa Y, Huang S, et al. Human-robot contact in the safeguarding space[J]. IEEE/ASME transactions on mechatronics, 1997, 2(4):230-236.
[89] Tejima N. Design method[C]//Integration of Assistive Technology in the Information Age:ICORR'2001, 7th International Conference on Rehabilitation Robotics. Clifton VA:IOS Press, 2001, 9:346.
[90] Ikuta K, Nokata M. General evaluation method of safety for human-care robots[C]//IEEE International Conference on Robotics and Automation, 1999. Piscataway NJ:IEEE, 1999, 3:2065-2072.
[91] Tao C, Yan Q, Li Y. Hierarchical shared control of cane-type walking-aid robot[J]. Journal of Healthcare Engineering, 2017, doi:10.1155/2017/8932938.
[92] Song K T, Jiang S Y, Wu S Y. Safe guidance for a walking-assistant robot using gait estimation and obstacle avoidance[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(5):2070-2078.
[93] Ko C H, Young K Y, Hsieh Y H. Optimized trajectory planning for mobile robot in the presence of moving obstacles[C]//2015 IEEE International Conference on Mechatronics (ICM). Piscataway NJ:IEEE, 2015:70-75.
[94] Kai Y, Arihara K. A walking support robot with velocity, torque, and contact force-based mechanical safety devices[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway NJ:IEEE, 2015:5026-5031.
[95] Hirata Y, Muraki A, Kosuge K. Motion control of intelligent passive-type walker for fall-prevention function based on estimation of user state[C]//Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. Piscataway NJ:IEEE, 2006:3498-3503.
[96] Hirata Y, Komatsuda S, Kosuge K. Fall prevention control of passive intelligent walker based on human model[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008. Piscataway NJ:IEEE, 2008:1222-1228.
[97] Kai Y, Arihara K, Kitaguchi S. Development of a walking support robot with velocity and torque-based mechanical safety devices[C]//2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Piscataway NJ:IEEE, 2014:1498-1503.
[98] Huang J, Di P, Wakita K, et al. Study of fall detection using intelligent cane based on sensor fusion[C]//International Symposium on Micro-NanoMechatronics and Human Science, 2008. Piscataway NJ:IEEE, 2008:495-500.
[99] Di P, Huang J, Nakagawa S, et al. Fall detection and prevention in the elderly based on the ZMP stability control[C]//2013 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO). Piscataway NJ:IEEE, 2013:82-87.
[100] Di P, Huang J, Nakagawa S, et al. Fall detection for the elderly using a cane robot based on ZMP estimation[C]//2013 International Symposium on Micro-NanoMechatronics and Human Science (MHS). Piscataway NJ:IEEE, 2013:1-6.
[101] Di P, Huang J, Nakagawa S, et al. Fall detection for elderly by using an intelligent cane robot based on center of pressure (COP) stability theory[C]//International Symposium on Micro-NanoMechatronics and Human Science (MHS), 2014. Piscataway NJ:IEEE, 2014:1-4.
[102] Nakagawa S, Hasegawa Y, Fukuda T, et al. Tandem stance avoidance using adaptive and asymmetric admittance control for fall prevention[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24(5):542-550.
[103] Yan Q, Huang J, Xiong C, et al. Data-driven humanrobot coordination based walking state monitoring with cane-type robot[J]. IEEE Access, 2018, 6:8896-8908.
[104] Sun P, Wang S, Karimi H R. Robust redundant input reliable tracking control for omnidirectional rehabilitative training walker[J]. Mathematical Problems in Engineering, 2014, doi:10.1155/2014/636934.
[105] Srivastava S, Kao P C, Kim S H, et al. Assist-as-needed robot-aided gait training improves walking function in individuals following stroke[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23(6):956-963.
[106] Kober J, Peters J. Reinforcement learning in robotics:A survey[M]//Reinforcement Learning. Berlin:Springer, Heidelberg, 2012:579-610.
[107] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553):436.
[108] Zhang J, Fiers P, Witte K A, et al. Human-in-theloop optimization of exoskeleton assistance during walking[J]. Science, 2017, 356(6344):1280-1284.
[109] Walsh C. Human-in-the-loop development of soft wearable robots[J]. Nature Reviews Materials, 2018, 3(6):78.