专题:康复辅具与康复工程

足踝矫形器及其生物力学研究进展

  • 王岩 ,
  • 张明
展开
  • 1. 香港理工大学深圳研究院, 深圳 518057;
    2. 香港理工大学工程学院生物医学工程系, 中国香港 999077
王岩,博士,研究方向为生物医学工程,电子信箱:yawang@polyu.edu.hk

收稿日期: 2019-07-25

  修回日期: 2019-10-31

  网络出版日期: 2019-11-30

基金资助

国家科技重点研发计划项目(2018YFB1107000);国家自然科学基金重点项目(11732015);国家自然科学基金面上项目(11972315);香港大学委员会基金项目(PolyU152065/17E)

Biomechanics of orthoses of the foot and ankle

  • WANG Yan ,
  • ZHANG Ming
Expand
  • 1. Research Institute of the Hong Kong Polytechnic University, Shenzhen 518057, China;
    2. Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Hong Kong 999077, China

Received date: 2019-07-25

  Revised date: 2019-10-31

  Online published: 2019-11-30

摘要

足踝矫形器是以非手术方法解决足踝问题的穿戴器具,可以有效控制足踝位置及运动,减缓关节负载。概述了足踝问题及相关足踝矫形器分别对人体的生物力学影响,探讨了计算生物力学的功能和在足踝矫形器评估中的初步应用。由于足踝生物力学的复杂性和研究技术的局限性,足踝矫形器的设计目前仍主要依据于经验,产品的治疗或康复效果存在很大争议。随着临床影像学以及测量技术和计算生物力学技术的发展,足踝生物力学研究能够更深入全面提供足踝内部和外部的受力环境,并广泛应用于足踝矫形器的设计和评估中。基于此,辅助以3D打印等先进制造技术,足踝矫形器将实现舒适性和功能性兼备的快速个性化定制,在具有良好的矫正效果的同时,其制造周期和成本将大大降低。关键词足踝矫形器;足踝生物力学;足踝损伤;关节应力

本文引用格式

王岩 , 张明 . 足踝矫形器及其生物力学研究进展[J]. 科技导报, 2019 , 37(22) : 60 -68 . DOI: 10.3981/j.issn.1000-7857.2019.22.007

Abstract

The foot is the most fundamental part of the human body for providing the body support, absorpting the impact and acting with the environment for propelling during movement. The ankle joint serves as a critical connection between the foot and the upper body. The problems in the foot and ankle will cause pain and weaken the functions of certain parts, and potentially result in further negative consequences to the lower limb, the pelvis even the spine. The orthoses of the foot and ankle, including the insoles, the braces, the arch supports and the ankle-foot orthoses, are used as non-surgical treatments to relieve pain, and compensate or retrieve functions. The foot orthoses could redistribute the plantar pressure distribution and realign the segments of the foot and ankle. The changes in the foot and ankle possibly will lead to biomechanical deviations in the upper body. It is critical to enhance the knowledge of the biomechanical consequences for the estimation of the efficiency and the optimization of the design of the foot ankle orthoses.

参考文献

[1] Levinger P, Murley G S, Barton C J, et al. A comparison of foot kinematics in people with normal-and flat-arched feet using the Oxford Foot Model[J]. Gait & Posture, 2010, 32(4):519-523.
[2] Barton C J, Levinger P, Crossley K M, et al. Relationships between the Foot Posture Index and foot kinematics during gait in individuals with and without patellofemoral pain syndrome[J]. Journal of Foot and Ankle Research, 2011, 4(1):10.
[3] Chuter V H. Relationships between foot type and dynamic rearfoot frontal plane motion[J]. Journal of foot and ankle research, 2010, 3:9.
[4] Zhang X, Aeles J, Vanwanseele B. Comparison of foot muscle morphology and foot kinematics between recreational runners with normal feet and with asymptomatic over-pronated feet[J]. Gait & Posture, 2017, 54:290-294.
[5] Fernandez-Seguin L M, Diaz Mancha J A, Sanchez R, et al. Comparison of plantar pressures and contact area between normal and cavus foot[J]. Gait & Posture, 2014, 39(2):789-792.
[6] Powell D W, Long B, Milner C E, et al. Frontal plane multi-segment foot kinematics in high-and low-arched females during dynamic loading tasks[J]. Human Movement Science, 2011, 30(1):105-114.
[7] Tong J W, Kong P W. Association between foot type and lower extremity injuries:Systematic literature review with meta-analysis[J]. Journal of Orthopaedic & Sports Physical therapy, 2013, 43(10):700-714.
[8] Nix S E, Vicenzino B T, Collins N J, et al. Gait parameters associated with hallux valgus:A systematic review[J]. Journal of Foot and Ankle Research, 2013, 6(1):9.
[9] Campbell B, Miller M C, Williams L, et al. Pilot study of a 3-dimensional method for analysis of pronation of the first metatarsal of hallux valgus patients[J]. Foot & ankle international, 2018, 39(12):1449-1456.
[10] Deschamps K, Birch I, Desloovere K, et al. The impact of hallux valgus on foot kinematics:A cross-sectional, comparative study[J]. Gait & Posture, 2010, 32(1):102-106.
[11] Perera A M, Mason L, Stephens M M. The pathogenesis of hallux valgus[J]. The Journal of Bone and Joint Surgery, 2011, 93(17):1650-1661.
[12] Chang R, Rodrigues P A, Van Emmerik R E A, et al. Multi-segment foot kinematics and ground reaction forces during gait of individuals with plantar fasciitis[J]. Journal of Biomechanics, 2014, 47(11):2571-2577.
[13] Khazzam M, Long J T, Marks R M, et al. Preoperative gait characterization of patients with ankle arthrosis[J]. Gait & Posture, 2006, 24(1):85-93.
[14] Murley G S, Tan J M, Edwards R M, et al. Foot posture is associated with morphometry of the peroneus longus muscle, tibialis anterior tendon, and Achilles tendon[J]. Scandinavian Journal of Medicine & Science in Sports, 2014, 24(3):535-541.
[15] Zhang X, Aeles J, Vanwanseele B. Comparison of foot muscle morphology and foot kinematics between recreational runners with normal feet and with asymptomatic over-pronated feet[J]. Gait & Posture, 2017, 54:290-294.
[16] Richie D H. Biomechanics and clinical analysis of the adult acquired flatfoot[J]. Clinics in Podiatric Medicine and Surgery, 2007, 24(4):617-644.
[17] van Boerum D H, Sangeorzan B J. Biomechanics and pathophysiology of flat foot[J]. Foot and Ankle Clinics, 2003, 8(3):419-430.
[18] Mosca V S. The cavus foot[J]. Journal of Pediatric Orthopaedics, 2001, 21(4):423-424.
[19] Lobo C C, Marín A G, Sanz D R, et al. Ultrasound evaluation of intrinsic plantar muscles and fascia in hallux valgus:A case-control study[J]. Medicine, 2016, 95(45):e5243-e5243.
[20] Incel N A, Genc H, Erdem H, et al. Muscle imbalance in hallux valgus:An electromyographic study[J]. American Journal of Physical Medicine & Rehabilitation, 2003, 82(5):345-349.
[21] Chuter V H, Janse de Jonge X A. Proximal and distal contributions to lower extremity injury:A review of the literature[J]. Gait & Posture, 2012, 36(1):7-15.
[22] Ness M E, Long J, Marks R, et al. Foot and ankle kinematics in patients with posterior tibial tendon dysfunction[J]. Gait & Posture, 2008, 27(2):331-339.
[23] Shibuya N, Jupiter D C, Ciliberti L J, et al. Characteristics of adult flatfoot in the United States[J]. The Journal of Foot and Ankle Surgery, 2010, 49(4):363-368.
[24] Abourazzak F, Kadi N, Azzouzi H, et al. A positive association between foot posture index and medial compartment knee osteoarthritis in moroccan people[J]. The Open Rheumatology Journal, 2014, 8:96.
[25] Al-Bayati Z, Coskun Benlidayi I, Gokcen N. Posture of the foot:Don't keep it out of sight, out of mind in knee osteoarthritis[J]. Gait & Posture, 2018. 66:130-134.
[26] Gross K D, Felson D T, Niu J, et al. Association of flat feet with knee pain and cartilage damage in older adults[J]. Arthritis Care & Research, 2011, 63(7):937-944.
[27] Guler H, Karazincir S, Turhanoglu A D, et al. Effect of coexisting foot deformity on disability in women with knee osteoarthritis[J]. Journal of the American Podiatric Medical Association, 2009, 99(1):23-27.
[28] Levinger P, Menz H B, Morrow A D, et al. Relationship between foot function and medial knee joint loading in people with medial compartment knee osteoarthritis[J]. Journal of Foot and Ankle Research, 2013, 6(1):33.
[29] Kosashvili Y, Fridman T, Backstein D, et al. The correlation between pes planus and anterior knee or intermittent low back pain[J]. Foot & Ankle International, 2008, 29(9):910-913.
[30] Younger A S, Hansen Jr S T. Adult cavovarus foot[J]. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 2005, 13(5):302-315.
[31] Menz H B, Roddy E, Thomas E, et al. Impact of hallux valgus severity on general and foot-specific health-related quality of life[J]. Arthritis Care & Research (Hoboken), 2011, 63(3):396-404.
[32] Spink M J, Menz H B, Lord S R. Distribution and correlates of plantar hyperkeratotic lesions in older people[J]. Journal of Foot and Ankle Research, 2009, 2(1):8.
[33] Landorf K B. Plantar heel pain and plantar fasciitis[J]. BMJ Clinical Evidence, 2015, 2015:1111.
[34] 张立宁, 丁珮. 足底筋膜炎的基础及临床研究进展[J]. 海南医学院学报, 2013, 19(3):429-432.
[35] 俞光荣, 夏江. 胫后肌腱功能不全的临床分期与治疗[J]. 中华骨科杂志, 2011, 31(3):285-292.
[36] Boldt A R, Willson J D, Barrios J A, et al. Effects of medially wedged foot orthoses on knee and hip joint running mechanics in females with and without patellofemoral pain syndrome[J]. Journal of Applied Biomechanics, 2013, 29(1):68-77.
[37] Bonifacio D, Richards J, Selfe J, et al. Influence and benefits of foot orthoses on kinematics, kinetics and muscle activation during step descent task[J]. Gait & Posture, 2018, 65:106-111.
[38] Bendova P, Ruzicka P, Peterova W, et al. MRI-based registration of pelvic alignment affected by altered pelvic floor muscle characteristics[J]. Clinical Biomechanics, 2007, 22(9):980-987.
[39] Rodrigues P, Chang R, TenBroek T, et al. Medially posted insoles consistently influence foot pronation in runners with and without anterior knee pain[J]. Gait & Posture, 2013, 37(4):526-531.
[40] Nigg B M. Factors influencing kinetic and kinematic variables in running[M]//Biomechanics of running shoes[M]. Champaign IL:Human Kinetics Publishers, 1986:139-159.
[41] Monaghan G M, Hsu W-H, Lewis C L, et al. Forefoot angle at initial contact determines the amplitude of forefoot and rearfoot eversion during running[J]. Clinical Biomechanics, 2014, 29(8):936-942.
[42] Reinschmidt C, van Den Bogert A J, Murphy N, et al. Tibiocalcaneal motion during running, measured with external and bone markers[J]. Clinical Biomechanics, 1997, 12(1):8-16.
[43] Kobayashi T, Orendurff M S, Singer M L, et al. Effect of plantarflexion resistance of an ankle-foot orthosis on ankle and knee joint power during gait in individuals poststroke[J]. Journal of Biomechanics, 2018, 75:176-180.
[44] Arch E S, Stanhope S J. Passive-dynamic ankle-foot orthoses substitute for ankle strength while causing adaptive gait strategies:A feasibility study[J]. Annals of Biomedical Engineering, 2015, 43(2):442-450.
[45] Mulroy S J, Eberly V J, Gronely J K, et al. Effect of AFO design on walking after stroke:Impact of ankle plantar flexion contracture[J]. Prosthetics and orthotics international, 2010, 34(3):277-292.
[46] Fatone S, Gard S A, Malas B S. Effect of ankle-foot orthosis alignment and foot-plate length on the gait of adults with poststroke hemiplegia[J]. Archives of Physical Medicine and Rehabilitation, 2009, 90(5):810-818.
[47] Yamamoto S, Fuchi M, Yasui T. Change of rocker function in the gait of stroke patients using an ankle foot orthosis with an oil damper:Immediate changes and the short-term effects[J]. Prosthetics and Orthotics International, 2011, 35(4):350-359.
[48] Shaw K E, Charlton J M, Perry C K L, et al. The effects of shoe-worn insoles on gait biomechanics in people with knee osteoarthritis:A systematic review and metaanalysis[J]. British Journal of Sports Medicine, 2018, 52(4):238-253.
[49] Mauricio E, Sliepen M, Rosenbaum D. Acute effects of different orthotic interventions on knee loading parameters in knee osteoarthritis patients with varus malalignment[J]. The Knee, 2018, 25(5):825-833.
[50] Parkes M J, Maricar N, Lunt M, et al. Lateral wedge insoles as a conservative treatment for pain in patients with medial knee osteoarthritis a meta-analysis[J]. JamaJournal of the American Medical Association, 2013, 310(7):722-730.
[51] Hatfield G L, Cochrane C K, Takacs J, et al. Knee and ankle biomechanics with lateral wedges with and without a custom arch support in those with medial knee osteoarthritis and flat feet[J]. Journal of Orthopaedic Research, 2016, 34(9):1597-1605.
[52] Jones R K, Chapman G J, Parkes M J, et al. The effect of different types of insoles or shoe modifications on medial loading of the knee in persons with medial knee osteoarthritis:A randomised trial[J]. Journal of Orthopaedic Research, 2015, 33(11):1646-1654.
[53] Yeh H C, Chen L F, Hsu W C, et al. Immediate efficacy of laterally wedged insoles with arch support on walking in persons with bilateral medial knee osteoarthritis[J]. Archives of Physical Medicine and Rehabilitation, 2014, 95(12):2420-2427.
[54] Hinman R S, Bardin L, Simic M, et al. Medial arch supports do not significantly alter the knee adduction moment in people with knee osteoarthritis[J]. Osteoarthritis and cartilage, 2013. 21(1):28-34.
[55] Turpin K M, De Vincenzo A, Apps A M, et al. Biomechanical and clinical outcomes with shock-absorbing insoles in patients with knee osteoarthritis:Immediate effects and changes after 1 month of wear[J]. Archives of Physical Medicine and Rehabilitation, 2012, 93(3):503-508.
[56] Nigg B M. Factors influencing kinetic and kinematic variables in running[M]//Biomechanics of running shoes[M]. Champaign IL:Human Kinetics Publishers, 1986:139-159.
[57] Kim S H, Ahn S H, Jung G S, et al. The effects of biomechanical foot orthoses on the gait patterns of patients with malalignment syndrome as determined by three dimensional gait analysis[J]. Journal of Physical Therapy Science, 2016, 28(4):1188-1193.
[58] Condie D N. The modern era of orthotics[J]. Prosthetics and Orthotics International, 2008, 32(3):313-323.
[59] Sliepen M, Mauricio E, and Rosenbaum D. Acute and mid-term (six-week) effects of an ankle-foot-orthosis on biomechanical parameters, clinical outcomes and physical activity in knee osteoarthritis patients with varus malalignment[J]. Gait & Posture, 2018, 62:297-302.
[60] Bleyenheuft C, Caty G, Lejeune T, et al. Assessment of the Chignon dynamic ankle-foot orthosis using instrumented gait analysis in hemiparetic adults[J]. Annales De Réadaptation Et De Médecine Physique, 2008, 51(3):154-160.
[61] Park J H, Chun M H, Ahn J S, et al. Comparison of gait analysis between anterior and posterior ankle foot orthosis in hemiplegic patients[J]. American journal of physical medicine & rehabilitation, 2009, 88(8):630-634.
[62] McDermott P, Wolfe E, Lowry C, et al. Evaluating the immediate effects of wearing foot orthotics in children with Joint Hypermobility Syndrome (JHS) by analysis of temperospatial parameters of gait and dynamic balance:A preliminary study[J]. Gait & Posture, 2018, 60:61-64.
[63] Tomaro J, Burdett R G. The effects of foot orthotics on the emg activity of selected leg muscles during gait[J]. Journal of Orthopaedic & Sports Physical Therapy, 1993, 18(4):532-536.
[64] Yamamoto S, Fuchi M, and Yasui T. Change of rocker function in the gait of stroke patients using an ankle foot orthosis with an oil damper:immediate changes and the short-term effects[J]. Prosthetics and Orthotics International, 2011, 35(4):350-359.
[65] Dananberg H J, Guiliano M. Chronic low-back pain and its response to custom-made foot orthoses[J]. Journal of the American Podiatric Medical Association, 1999, 89(3):109-117.
[66] Resende R A, Deluzio K J, Kirkwood R N, et al. Increased unilateral foot pronation affects lower limbs and pelvic biomechanics during walking[J]. Gait & Posture, 2015, 41(2):395-401.
[67] Cambron J A, Dexheimer J M, Duarte M, et al. Shoe orthotics for the treatment of chronic low back pain:a randomized controlled trial[J]. Archives of Physical Medicine and Rehabilitation, 2017, 98(9):1752-1762.
[68] Jafarnezhadgero A, Shad M M, Ferber R. The effect of foot orthoses on joint moment asymmetry in male children with flexible flat feet[J]. Journal of Bodywork and Movement Therapies, 2018, 22(1):83-89.
[69] Bird A R, Bendrups A P, Payne C B. The effect of foot wedging on electromyographic activity in the erector spinae and gluteus medius muscles during walking[J]. Gait & Posture, 2003, 18(2):81-91.
[70] Williamson P, Lechtig A, Hanna P, et al. Pressure distribution in the ankle and subtalar joint with routine and oversized foot orthoses[J]. Foot & Ankle International, 2018, doi:10.1177/1071100718770659.
[71] Bousie J A, Blanch P, McPoil T G, et al. Hardness and posting of foot orthoses modify plantar contact area, plantar pressure, and perceived comfort when cycling[J]. Journal of Science and Medicine in Sport, 2018, 21(7):691-696.
[72] Anggoro P W, Saputra E, Tauviqirrahman M, et al. A 3-dimensional finite element analysis of the insole shoe orthotic for foot deformities[J]. International Journal of Applied Engineering Research, 2017, 12(15):5254-5260.
[73] Cheung J T M, Zhang M. Parametric design of pressure-relieving foot orthosis using statistics-based finite element method[J]. Medical Engineering & Physics, 2008, 30(3):269-277.
[74] Chen W P, Ju C W, Tang F T. Effects of total contact insoles on the plantar stress redistribution:A finite element analysis[J]. Clinical Biomechanics, 2003, 18(6):17-24.
[75] Chu T M, Reddy N P, Padovan J. Stress distribution in the ankle-foot orthosis used to correct pathological gait[J]. Journal of Rehabilitation Research and Development, 1995, 32:349-360.
[76] Gomes G, Lourenço I, Oliveira J, et al. Structural reinforcements on AFO's:A study using computer-aided design and finite element method[C]//2017 IEEE 5th Portuguese Meeting on Bioengineering (ENBENG). Piscataway NJ:IEEE, 2017, doi:10.1109/ENBENG.2017.7889432.
[77] Banga H K, Belokar R M, Kalra P, et al. Fabrication and stress analysis of ankle foot orthosis with additive manufacturing[J]. Rapid Prototyping Journal, 2018, 24(2):301-312.
[78] Jamshidi N, Hanife H, Rostami M, et al. Modelling the interaction of ankle-foot orthosis and foot by finite element methods to design an optimized sole in steppage gait[J]. Journal of Electrical Engineering & Technology, 2010, 34(2):116-123.
[79] Schrank E S, Hitch L, Wallace K, et al. Assessment of a virtual functional prototyping process for the rapid manufacture of passive-dynamic ankle-foot orthoses[J]. Journal of Biomechanical Engineering, 2013, 135(10):101011-7.
[80] Darwin E N A, Tardan G, Abdullah A H. Computational analysis of adjustable ankle foot orthosis for cerebral palsy children[J]. International Journal of Engineering and Technology (UAE), 2018, 7(4):83-88.
文章导航

/