综述

菌丝体基塑料的发展现状与前景

  • 万杰 ,
  • 银清扬 ,
  • 翁端
展开
  • 1. 南京工程学院能源研究院, 南京 211167;
    2. 同济大学材料科学与工程学院, 上海 201804;
    3. 清华大学材料学院先进材料教育部重点实验室, 北京 100084
万杰,助理研究员,研究方向为环境催化,电子信箱:wangjie10@tsinghua.org.cn

收稿日期: 2018-09-18

  修回日期: 2019-01-03

  网络出版日期: 2019-11-30

Current status and tomorrow of mycelium based plastics

  • WAN Jie ,
  • YIN Qingyang ,
  • WENG Duan
Expand
  • 1. Energy Research Institute, Nanjing Institute of Technology, Nanjing 211167, China;
    2. School of Material Science and Engineering, Tongji University, Shanghai 201804, China;
    3. Key Lab for Advanced Materials of Ministry of Education, School of Material Science and Engineering, Tsinghua University, Beijing 100084, China

Received date: 2018-09-18

  Revised date: 2019-01-03

  Online published: 2019-11-30

摘要

菌丝体基塑料具有原材料成本低、环境友好、安全、惰性、可再生等优点,有望取代现有聚苯乙烯基塑料而广泛应用于包装、建筑、交通等领域。简述了现有真菌栽培为基础的菌丝体基塑料的研究进展和现状,介绍了菌丝体基塑料的合成工艺、性能优势、主要应用和产业现状,从技术研发和市场应用两个方面进行了展望。关键词菌丝体基塑料;生物可降解材料;环境友好材料

本文引用格式

万杰 , 银清扬 , 翁端 . 菌丝体基塑料的发展现状与前景[J]. 科技导报, 2019 , 37(22) : 105 -112 . DOI: 10.3981/j.issn.1000-7857.2019.22.012

Abstract

Mycelium based plastic shows advantages of being low cost, eco-friendly, safe, inert and renewable, and therefore has the potential to replace polystyrene for a wide variety of applications such as packaging, construction, and transportation. This paper reviews the achievement and current status of the technology based on mushroom cultivation for mycelium based plastics. Synthesis process, property advantages, major applications and industrialization progresses are also briefed. Prospects of both technology and application are discussed in the end.

参考文献

[1] 汤桂兰, 胡彪, 康在龙, 等. 废旧塑料回收利用现状及问题[J]. 再生资源与循环经济, 2013, 6(1):31-35. Tang Guilan, Hu Biao, Kang Zailong, et al. Current status and problems on waste plastic[J]. Recyclable Resources and Circular Economy, 2013, 6(1):31-35.
[2] Al-Salem S M, Lettieri P, Baeyens J. Recycling and recovery routes of plastic solid waste(PSW):A review[J]. Waste Management, 2009, 29(10):2625-2643.
[3] 邓炜航, 屈茂会. 我国废旧塑料的废物再利用现状以及未来趋势[J]. 中国资源综合利用, 2018, 36(4):75-77. Deng Weihang, Qu Maohui. Waste plastic recycling status and future trends in China[J]. China Resources Comprehensive Utilization, 2009, 29(10):2625-2643.
[4] Rochman C M, Browne M A, Halpern B S, et al. Policy:Classify plastic waste as hazardous[J]. Nature, 2013, 494(7436):169-171.
[5] Hosam E M S, Samir B E. Long-term effect on the solidified degraded cellulose-based waste slurry in cement matrix[J]. Acta Montanistica Slovaca, 2010, 14(4):291.
[6] 翁端, 冉锐, 王蕾. 环境材料学[M]. 第2版. 北京:清华大学出版社, 2011. Weng Duan, Ran Rui, Wang Lei. Environmental Materials Science[M]. Second Edition Beijing:Tsinghua University Press, 2011.
[7] 霍鹏. 可降解塑料的研究现状及发展趋势[J]. 工程塑料应用, 2016, 44(3):150-153. Huo Peng. Research status and development trend of degradable plastics[J]. Engineering Plastic Application, 2016, 44(3):150-153.
[8] 张爱雷. 可降解生物包装材料的研究进展[J]. 科技与企业, 2014(14):362-363. Zhang Ailei. Research trends in biodegradable packaging materials[J]. Science-Technology Enterprise, 2014(14):362-363.
[9] 朱亚龙. 浅谈可降解塑料的研究现状及发展趋势[J]. 化工管理, 2018(6):12. Zhu Yalong. Brief discussion on current status and developing trends of degradable plastics[J]. Chemical Enterprise Management, 化工管理, 2018(6):12.
[10] 刘钺, 杜风光. 生物降解塑料的产业化现状与前景[J]. 河南化工, 2012, 29(15):21-25. Liu Yue, Du Fengguang. Status and progress of biodegradable plastics industry[J]. Henan Chemical Industry, 2012, 29(15):21-25.
[11] Pandey J K, Raghunatha R K, Pratheep K, et al. An overview on the degradability of polymer nanocomposites[J]. Polymer Degradation and Stability, 2005, 88(2):234-250.
[12] 孙斌. 生物可降解材料——聚乳酸及其共聚物的制备与性质研究[D]. 济南:山东师范大学, 2015. Sun Bin. Synthesis and properties of the biodegradable material-polylactide acid and its copolymers[D]. Jinan:Shandong Normal University, 2015.
[13] Marcos-Fernández A, Abraham G A; Valentín J L, et al. Synthesis and characterization of biodegradable nontoxic poly(ester-urethane-urea)s based on poly(ε-caprolactone) and amino acid derivatives[J]. Polymer, 2005, 47(3):785-798.
[14] 郑楠. 生物可降解聚酯PHA及其改性的研究[D]. 大连:大连工业大学, 2011. Zheng Nan. Study on biodegradable polyester PHA and its modification[D]. Dalian:Dalian Polytechnic University, 2011.
[15] 申志翔, 陈复生, 宋小勇, 等. 淀粉基生物可降解材料的研究进展[J]. 食品工业, 2017, 38(11):290-294. Shen Zhixiang, Chen Fusheng, Song Xiaoyong, et al. Research progress of biodegradable starch-based plastics[J]. The Food Industry, 2017, 38(11):290-294.
[16] Ma X F, Chang P R, Yu J G, et al. Preparation and properties of biodegradable poly(propylene carbonate)/thermoplastic dried starch composites[J]. Carbohydrate Polymers, 2007, 71(2):229-234.
[17] Cao Y X, Du F G, Wang X L, et al. New biodegradable blends from aliphatic polycarbonate and poly(vinyl alcohol)[J]. Polymers and polymer Composites, 2006, 14(6):577-584.
[18] 钱伯章. 可生物降解塑料的发展现状与前景[J]. 国外塑料, 2010, 28(8):38-43. Qian Bozhang. Current status and future of biodegradable plastics[J]. World Plastics, 2010, 28(8):38-43.
[19] 高文永. 中国农业生物质能源评价与产业发展模式研究[D]. 北京:中国农业科学院, 2010. Gao Wenyong. Study on resource evaluation and industry development models of agricultural bioengery in China[D]. Beijing:Chinese Academy of Agricultural Sciences, 2010.
[20] Haider T, Völker C, Kramm J, et al. Plastics of the future? The impact of biodegradable polymers on the environment and on society[J]. Angewandte Chemie, 2018, doi:10.1002/ange.201805766.
[21] 黄占华, 张斌, 邹莉, 等. 一种潜在新型材料——真菌纤维的晶体结构表征[J]. 功能材料, 2012, 43(7):940-943. Huang Zhanhua, Zhang Bin, Zou Li, et al. Characterization of the crystal structure of fungus fiber:A novel potential material[J]. Journal of Functional Materials, 2012, 43(7):940-943.
[22] Karimjee M Z. Biodegradable architecture:finite construction for endless futures[D]. Ottwa:Azrieli School of Architecture and Urbanism, 2014.
[23] 李桂梅, 白晓, 李燕立. IDEA13创新产品面面观[J]. 非织造布, 2013,(3):64-68. Li Guimei, Bai Xiao, Li Yanli. Review of innovative products in IDEA12[J]. Nonwovens, 2013(3):64-68.
[24] Morlin Y S. "Magic mushroom material grows into desks, chairs and lampshades"[EB/OL].[2016-09-17]. http://edition.cnn.com/style/article/ecovative-mushroomfurniture/index.html.
[25] Binder L."Ecovative design:Making magic out of mushrooms"[EB/OL].[2009-05-11]. https://earth911.com/inspire/diy/making-magic-out-of-mushrooms/.
[26] The Economist. A library of new materials:Exotic, but applicable[EB/OL].[2012-07-11]. https://www.economist.com/babbage/2012/07/11/exotic-but-applicable.
[27] Abhijith R, Ashok A, Rejeesh C R. Sustainable packaging applications from mycelium to substitute polystyrene:A review[J]. Materials Today:Proceedings, 2018, 5(1):2139-2145.
[28] Ashok A, Rejeesh C R, Renjith R. Biodegradable polymers for sustainable packaging applications:A review[J]. International Journal of Bionics and Bio-Materials, 2016, 2(2):1-11.
[29] Ecovative design LLC. How it works:Mycelium biofabrication platform[EB/OL].[2018-09-01]. https://ecovativedesign.com/how-it-works.
[30] Ecovative design LLC. All products grown by Ecovative[EB/OL].[2018-09-01]. https://shop.ecovativedesign. com/.
[31] 吴豪, 赵鹏, 章琦, 等. 基于菌丝体的缓冲包装材料制备及性能研究[J]. 浙江科技学院学报, 2015, 27(1):22-27. Wu Hao, Zhao Peng, Zhang Qi, et al. Preparation and properties of cushion packaging material based on mycelium[J]. Journal of Zhejiang University of Science and Technology, 2015, 27(1):22-27.
[32] 臧建荣, 谭学锋. 一种新型的菌丝体废旧塑料复合材料[J]. 广东化工, 2014, 41(3):31-32. Zang Jianrong, Tan Xuefeng. A new composite material of mycelium and waste plastic[J]. Guangdong Chemical Industry, 2014, 41(3):31-32.
[33] 鲁车龙. 利用食用菌发酵生产生物板材关键技术研究[D]. 杨凌:西北农林科技大学, 2015. Lu Chelong. The key technology of productin biomass board by edible fungi fermentation[D]. Yangling:Northwest A&F University, 2015.
[34] 任晓琼, 赵风清, 胡倩倩. 利用青霉素废菌丝体制备脱硫石膏缓凝剂的研究[J]. 环境科学与技术, 2014, 37(2):134-137. Ren Xiaoqiong, Zhao Fengqing, Hu Qianqian. Preparation of gypsum retarder from waste penicillin mycelium[J]. Environmental Science and Technology, 2014, 37(2):134-137.
[35] Ziegler A R, Bajwa D S, Mcintyre G, et al. Evaluation of physico-mechanical properties of mycelium reinforced green biocomposites made from celulosic fibers[J]. Applied Engineering in Agriculture, 2016, 32(6):931-938.
[36] Pelletier M G, Holt G A, Wanjura J D, et al. An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates[J]. Industrial Crops & Products, 2013, 51(6):480-485.
[37] Ecovative design LLC. Packaging:Case study of dell, Merck and Rich Brilliant Willing[EB/OL].[2018-09-01]. https://shop.ecovativedesign.com/collections/packaging.
[38] Xinhua News. Regulations driving demand for biodegradable plastics:Report[EB/OL].[2018-07-27]. http://www.xinhuanet.com/english/2018-07/27/c_137350599.htm.
[39] 刘朝艳. 2016-2017年世界塑料工业进展(I)[J]. 塑料工业, 2018, 46(3):1-12. Liu Zhaoyan. Progress of the world's plastics industry in 2016-2017(I)[J]. China Plastics Industry, 2018, 46(3):1-12.
[40] Haneef M, Ceseracciu L, Canale C, et al. Advanced materials from fungal mycelium:fabrication and tuning of physical properties[J]. Scientific Reports, 2017, 7:41292.
[41] 周立成, 刘峰. 中国包装年鉴2011-2012[M]. 北京:中国包装联合会, 2013. Zhou Licheng, Liu Feng. China packaging yearbook[M]. Beijign:China Packaging Federation, 2013.
[42] Leena ElDeeb. Redhouse studio:Creating buildings that breathe[EB/OL].[2018-02-25]. https://progrss.com/sustainability/20180225/redhouse-studio-buildings-breathe/.
文章导航

/