专题:2019年诺贝尔科学奖成果简介

低氧诱导因子在疾病治疗中的新进展——2019年诺贝尔生理学或医学奖成果简析

  • 李寒 ,
  • 路香雪
展开
  • 首都医科大学附属北京朝阳医院血液净化科, 北京 100020
李寒,主任医师、教授,研究方向为肾脏病与血液净化,电子信箱:hanli@ccmu.edu.cn;路香雪(共同第一作者),博士研究生,研究方向为肾脏病与血液净化,电子信箱:xiangxuelu@ccmu.edu.cn

收稿日期: 2019-11-04

  修回日期: 2019-12-16

  网络出版日期: 2020-01-02

基金资助

国家自然科学基金项目(81670673);北京市自然科学基金项目(7182060)

New progress of hypoxia inducible factor in the treatment of diseases

  • LI Han ,
  • LU Xiangxue
Expand
  • Department of Blood Purification, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China

Received date: 2019-11-04

  Revised date: 2019-12-16

  Online published: 2020-01-02

摘要

低氧诱导因子是一种异二聚体结构的DNA结合转录因子,它可以与特定的核辅因子结合,激活多种基因,在缺氧条件下优化氧的利用。美国癌症学家William G.Kaelin Jr、英国医学家Sir Peter J.Ratcliffe和美国医学家Gregg L.Semenza因发现了细胞如何感知和适应氧可用性,获得了2019年的诺贝尔生理学或医学奖,其中HIF发挥了重要的作用。介绍了HIF在肾性贫血、肿瘤、心血管疾病等治疗中的研究进展,探讨了其对人类健康的意义。

本文引用格式

李寒 , 路香雪 . 低氧诱导因子在疾病治疗中的新进展——2019年诺贝尔生理学或医学奖成果简析[J]. 科技导报, 2019 , 37(24) : 51 -56 . DOI: 10.3981/j.issn.1000-7857.2019.24.007

Abstract

The hypoxia inducible factor (HIF) is a heterodimer DNA-binding transcription factor that can bind with specific nuclear cofactors and activate a variety of genes to optimize the oxygen utilization under hypoxia conditions. The American oncologist William G. Kaelin Jr., the British medical scientist Sir Peter J. Ratcliffe and the American medical scientist Gregg L. Semenza won the 2019 Nobel Prize in Physiology or Medicine for discovering how cells sense and adapt to the oxygen availability where the HIF plays an important role. This paper reviews the research progress of the HIF in the treatment of renal anemia, tumor, cardiovascular disease, as well as its significance to human health.

参考文献

[1] Palmer B F, Clegg D J. Oxygen sensing and metabolic homeostasis[J]. Molecular and Cellular Endocrinology, 2014, 397(1-2):51-58.
[2] Wilkins S E, Abboud M I, Hancock R L, et al. Targeting protein-protein interactions in the HIF system[J]. Current Medicinal Chemistry, 2016, 11(8):773-786.
[3] Mevissen T E T, Komander D. Mechanisms of deubiquitinase specificity and regulation[J]. Annual Review of Biochemistry, 2017, 86:159-192.
[4] Wiesener M S, Jurgensen J S, Rosenberger C, et al. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs[J]. The FASEB Journal, 2003, 17(2):271-273.
[5] Heidbreder M, Frohlich F, Johren O, et al. Hypoxia rapidly activates HIF-3alpha mRNA expression[J]. The FASEB Journal, 2003, 17(11):1541-1543.
[6] Fong G H, Takeda K. Role and regulation of prolyl hydroxylase domain proteins[J]. Cell Death and Differentiation, 2008, 15(4):635-641.
[7] Liu Q, Davidoff O, Niss K, et al. Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis[J]. Journal of Clinical Investigation, 2012, 122(12):4635-4644.
[8] Drevytska T, Gavenauskas B, Drozdovska S, et al. HIF-3alpha mRNA expression changes in different tissues and their role in adaptation to intermittent hypoxia and physical exercise[J]. Pathophysiology, 2012, 19(3):205-214.
[9] Tojo Y, Sekine H, Hirano I, et al. Hypoxia signaling cascade for erythropoietin production in hepatocytes[J]. Molecular and Cellular Endocrinology, 2015, 35(15):2658-2672.
[10] Biggar P, Kim G H. Treatment of renal anemia:Erythropoiesis stimulating agents and beyond[J]. Kidney Research and Clinical Practice Abbreviation, 2017, 36(3):209-223.
[11] Ashby D R, Gale D P, Busbridge M, et al. Plasma hepcidin levels are elevated but responsive to erythropoietin therapy in renal disease[J]. Kidney International, 2009, 75(9):976-981.
[12] Gupta N, Wish J B. Hypoxia-inducible factor prolyl hydroxylase inhibitors:A potential new treatment for anemia in patients with CKD[J]. American Journal of Kidney Diseases, 2017, 69(6):815-826.
[13] Zhong H, Zhou T, Li H, et al. The role of hypoxia-inducible factor stabilizers in the treatment of anemia in patients with chronic kidney disease[J]. Drug Design Development and Therapy, 2018, 12:3003-3011.
[14] Drueke T B, Parfrey P S. Summary of the KDIGO guideline on anemia and comment:Reading between the (guide)line(s)[J]. Kidney International, 2012, 82(9):952-960.
[15] Cizman B, Sykes A P, Paul G, et al. An exploratory study of daprodustat in erythropoietin-hyporesponsive subjects[J]. Kidney International Report, 2018, 3(4):841-850.
[16] Pezzuto A, Carico E. Role of HIF-1 in cancer progression:Novel insights. A review[J]. Current Molecular Medicine, 2018, 18(6):343-351.
[17] Balamurugan K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer[J]. International Journal of Cancer, 2016, 138(5):1058-1066.
[18] Cho H, Kaelin W G. Targeting HIF2 in clear cell renal cell carcinoma[J]. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81:113-121.
[19] Wigerup C, Pahlman S, Bexell D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer[J]. Pharmacology & Therapeutics, 2016, 164:152-169.
[20] Duan C. Hypoxia-inducible factor 3 biology:Complexities and emerging themes[J]. American Journal of Physiology, 2016, 310(4):C260-269.
[21] Yu T, Tang B, Sun X. Development of inhibitors targeting hypoxia-inducible factor 1 and 2 for cancer therapy[J]. Yonsei Medical Journal, 2017, 58(3):489-496.
[22] Miranda E, Nordgren I K, Male A L, et al. A cyclic peptide inhibitor of HIF-1 heterodimerization that inhibits hypoxia signaling in cancer cells[J]. Journal of the American Chemical Society, 2013, 135(28):10418-10425.
[23] Lee S H, Wolf P L, Escudero R, et al. Early expression of angiogenesis factors in acute myocardial ischemia and infarction[J]. New England Journal of Medicine, 2000, 342(9):626-633.
[24] Kido M, Du L, Sullivan C C, et al. Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse[J]. Journal of the American College of Cardiology, 2005, 46(11):2116-2124.
[25] Huang Y, Hickey R P, Yeh J L, et al. Cardiac myocytespecific HIF-1alpha deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart[J]. The FASEB Journal, 2004, 18(10):1138-1140.
[26] Jain T, Nikolopoulou E A, Xu Q, et al. Hypoxia inducible factor as a therapeutic target for atherosclerosis[J]. Pharmacology & Therapeutics, 2018, 183:22-33.
[27] Christoph M, Ibrahim K, Hesse K, et al. Local inhibition of hypoxia-inducible factor reduces neointima formation after arterial injury in ApoE-/-mice[J]. Atherosclerosis, 2014, 233(2):641-647.
[28] Palazon A, Goldrath A W, Nizet V, et al. HIF transcription factors, inflammation, and immunity[J]. Immunity, 2014, 41(4):518-528.
[29] Taylor C T, Colgan S P. Regulation of immunity and inflammation by hypoxia in immunological niches[J]. Nature Reviews Immunology, 2017, 17(12):774-785.
[30] Ma C, Wei J, Zhan F, et al. Urinary hypoxia-inducible factor-1alpha levels are associated with histologic chronicity changes and renal function in patients with lupus nephritis[J]. Yonsei Medical Journal, 2012, 53(3):587-592.
[31] Hu F, Shi L, Mu R, et al. Hypoxia-inducible factor-1alpha and interleukin 33 form a regulatory circuit to perpetuate the inflammation in rheumatoid arthritis[J]. PLoS One, 2013, 8(8):e72650.
[32] Marik C, Felts P A, Bauer J, et al. Lesion genesis in a subset of patients with multiple sclerosis:a role for innate immunity[J]. Brain, 2007, 130(Pt 11):2800-2815.
[33] Hu F, Liu H, Xu L, et al. Hypoxia-inducible factor-1alpha perpetuates synovial fibroblast interactions with T cells and B cells in rheumatoid arthritis[J]. European Journal of Immunology, 2016, 46(3):742-751.
[34] Barteczek P, Li L, Ernst A S, et al. Neuronal HIF-1alpha and HIF-2alpha deficiency improves neuronal survival and sensorimotor function in the early acute phase after ischemic stroke[J]. Journal of Cerebral Blood Flow & Metabolism, 2017, 37(1):291-306.
[35] Li C, Zhang B, Zhu Y, et al. Post-stroke constraint-induced movement therapy increases functional recovery, angiogenesis, and neurogenesis with enhanced expression of HIF-1alpha and VEGF[J]. Current Neurovascular Research, 2017, 14(4):368-377.
文章导航

/