专题:2019年科技回眸

2019年光学热点回眸

  • 沈卫星 ,
  • 谢兴龙 ,
  • 朱健强
展开
  • 中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
沈卫星,高级工程师,研究方向为光学检测,电子信箱:wxshen@mail.shcnc.ac.cn

收稿日期: 2019-12-29

  修回日期: 2020-01-06

  网络出版日期: 2020-02-29

基金资助

中国科学院国际合作项目(29201631251100101)

Memorable sounds in the optics and photonics in 2019

  • SHEN Weixing ,
  • XIE Xinglong ,
  • ZHU Jianqiang
Expand
  • Naotional Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, CAS., Shanghai 201800, China

Received date: 2019-12-29

  Revised date: 2020-01-06

  Online published: 2020-02-29

摘要

随着激光的诞生,光学已渗透到人类生活的方方面面。盘点了未来可能会对人类生存及生活方式产生巨大影响的微纳光学、超强激光、成像技术、量子通信、太赫兹技术、光学通信、生物光子学、人工智能用于光学检测8个光学技术研究领域,回顾了这些领域在2019年的重大进展。

本文引用格式

沈卫星 , 谢兴龙 , 朱健强 . 2019年光学热点回眸[J]. 科技导报, 2020 , 38(1) : 19 -37 . DOI: 10.3981/j.issn.1000-7857.2020.01.002

Abstract

Since the birth of laser, optics and photonics have penetrated into all aspects of people's life. This article describes the major progress in the field of optics and photonics in 2019, and draws up eight optical research directions in which the related researches may likely have enormous impact on human existence and way of life in the future.

参考文献

[1] Arute F, Arya K, Babbush R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574:505-511.
[2] Stockman M I. Nanoplasmonics:Past, present, and glimpse into future[J]. Optics Express, 2011, 19(22):22029-22106.
[3] Halas N J, Lal S, Chang W S, et al. Nordlander, plasmons in strongly coupled metallic nanostructures[J]. Chemical Reviews, 2011, 111(6):3913-3961.
[4] Valev V K, Baumberg J J, Sibilia C, et al. Chirality and chiroptical effects inplasmonic nanostructures:Fundamentals, recent progress, and outlook[J]. Advanced Materials, 2013, 25(18):2517-2534.
[5] Sio L D, Lloyd P F, Tabiryan N V, et al. Thermoplasmonic activated reverse-mode liquid crystal gratings[J]. ACS Applied Nano Materials, 2019, 2:3315-3322.
[6] Optics in 2019[EB/OL].[2019-12-10]. https://www.osaopn.org/home/articles/volume_30/december_2019/features/optics_in_2019/.
[7] Zhang M, Wang C, Hu Y W, et al. Electronically programmable photonic molecule[J]. Nature Photonics, 2019, 13:36-40.
[8] Wang C, Zhang M, Yu M J. et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation[J]. Nature Communications, 2019, 10:978-984.
[9] Yifat Y, Coursault D, Peterson CW, et al. Reactive optical matter:Light-induced motility in electrodynamically asymmetric nanoscale scatterers[J]. Light:Science & Applications, 2018, 7:105-112.
[10] Hu J T, Wang D Q, Bhowmik D, et al. Lattice-resonance metalenses for fully reconfigurable imaging[J]. ACS Nano, 2019, 13(4):4613-4620.
[11] 中国光学十大进展[EB/OL]. (2019-12-13)[2019-12-20]. http://www.opticsjournal.net/Columns/ZGGX?type=lntj_index&year=2019.
[12] Yang Z Q, Kang D, Lu F F, et al. Silica nanocone array as a template for fabricating a plasmon induced hot electron photodetector[J]. Photonics Research, 2019, 7(3):294-299.
[13] Huang Q S, Q J, Feng, J T, et al. Realization of waferscale nanogratings with sub-50 nm period through vacancy epitaxy[J]. Nature Communications, 2019, 10:2437-2446.
[14] Li C, Chen K, Guan M X. et al. Extreme nonlinear strong-field photoemission from carbon nanotubes[J]. Nature Communications, 2019, 10:4891-4900.
[15] Danson C, Hillier D, Hopps N, et al. Petawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2015, 1:5-18.
[16] Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7(3):1-53.
[17] LaserlabEurope.[2019-12-20]. https://www.laserlab-europe.eu/news-and-press/issue-26.
[18] Drescher L, Kornilov O, Witting T, et al. Extreme-ultraviolet refractive optics[J]. Nature, 2018, 564(7734):91-94.
[19] Adli E, Ahuja A, Apsimon O, et al. Acceleration of electrons in the plasma wakefield of a proton bunch[J]. Nature, 2018, 561(7723):363-367.
[20] Zeng X M, Zhou K N, Zuo Y L, et al. Multi-petawatt laser facility fully based on optical parametric chirpedpulse amplification[J]. Optics Letters, 2017, 42(10):2014-2017.
[21] Chu Y X, Gan Z B, Liang X Y, et al. High-energy large-aperture Ti:sapphire amplifier for 5 PW laser pulses[J]. Optics Letters, 2015, 40(21):5011-5014.
[22] Fei P, Nie J, Lee J Y, et al. Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens[J]. Advanced Photonics, 2019, 1(1):016002.
[23] Li Y C, Liu X S, Li B J. Single-cell biomagnifier for optical nanoscopes and nanotweezers[J]. Light:Science & Applications, 2019, 8:61-72.
[24] Kuai Y, Chen J X, Tang Xi, et. al. Label-free surfacesensitive photonic microscopy with high spatial resolution using azimuthal rotation illumination[J]. Science Advances, 2019, 5(3):1-10.
[25] Zhuang R Z, Wang X J, Ma W B. et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response[J]. Nature Photonics, 2019, 13:602-608.
[26] Zhang M, Feng L T, Zhou Z Y, et al. Generation of multiphoton quantum states on silicon[J]. Light:Science & Applications, 2019, 8:41-47.
[27] Pan X Z, Yu S, Zhou Y F, et al. Orbital-angular-momentum multiplexed continuous-variable entanglement from four-wave mixing in hot atomic vapor[J]. Physical Review Letters, 2019, 123(7):070506.
[28] Wang S, He D Y, Yin Z Q, et al. Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system[J]. Physical Review X, 2019, 9:021046.
[29] Li Z D, Zhang R, Yin X F, et al. Experimental quantum repeater without quantum memory[J]. Nature Photonics, 2019, 13:644-648.
[30] Guerboukha H, Nallappan K, Cao Y, et al. Planar porous components for low-loss terahertz optics[J]. Advanced Optical Materials, 2019, 7:1900236.
[31] Li H, Yan M, Wan W J, et al. Graphene-coupled terahertz semiconductor lasers for enhanced passive frequency comb operation[J]. Advanced Science, 2019, 6(20):1900460.
[32] Zhao Y C, Wang L, Zhang Y X, et al. High-speed efficient terahertz modulation based on tunable collectiveindividual state conversion within an active 3 nm twodimensional electron gas metasurface[J]. Nano Letters, 2019, 19(11):7588-7597.
[33] Zhang F, Zhu Y X, Yang F, et al. Up to single lane 200 G optical interconnects with silicon photonic modulator[C]//2019 Optical Fiber Communications Conference and Exhibition. Piscataway, N J:IEEE, 2019.
[34] Marpaung D, Yao J P, Capmany J. Integrated microwave photonics[J]. Nature Photonics, 2019, 13:80-90.
[35] Lin G, Zhang S, Hu Y, et al. Nonreciprocal amplification with four-level hot atoms[J]. Physic Review Letters, 2019, 123(3):033902.
[36] Gautam R, Xiang Y X, Lamstein J, et al. Optical forceinduced nonlinearity and self-guiding of light in human red blood cell suspensions[J]. Light:Science & Applications, 2019, 8:31-39.
[37] Xin H B, Sim W J, Namgung B. et al. Quantum biological tunnel junction for electron transfer imaging in live cells[J]. Nature Communications, 2019, 10:3245-3255.
[38] Helgadottir S, Argun A, Volpe G. Digital video microscopy enhanced by deep learning[J]. Optica, 2018, 6(4):506-513.
文章导航

/