[1] Arute F, Arya K, Babbush R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574:505-511.
[2] Stockman M I. Nanoplasmonics:Past, present, and glimpse into future[J]. Optics Express, 2011, 19(22):22029-22106.
[3] Halas N J, Lal S, Chang W S, et al. Nordlander, plasmons in strongly coupled metallic nanostructures[J]. Chemical Reviews, 2011, 111(6):3913-3961.
[4] Valev V K, Baumberg J J, Sibilia C, et al. Chirality and chiroptical effects inplasmonic nanostructures:Fundamentals, recent progress, and outlook[J]. Advanced Materials, 2013, 25(18):2517-2534.
[5] Sio L D, Lloyd P F, Tabiryan N V, et al. Thermoplasmonic activated reverse-mode liquid crystal gratings[J]. ACS Applied Nano Materials, 2019, 2:3315-3322.
[6] Optics in 2019[EB/OL].[2019-12-10]. https://www.osaopn.org/home/articles/volume_30/december_2019/features/optics_in_2019/.
[7] Zhang M, Wang C, Hu Y W, et al. Electronically programmable photonic molecule[J]. Nature Photonics, 2019, 13:36-40.
[8] Wang C, Zhang M, Yu M J. et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation[J]. Nature Communications, 2019, 10:978-984.
[9] Yifat Y, Coursault D, Peterson CW, et al. Reactive optical matter:Light-induced motility in electrodynamically asymmetric nanoscale scatterers[J]. Light:Science & Applications, 2018, 7:105-112.
[10] Hu J T, Wang D Q, Bhowmik D, et al. Lattice-resonance metalenses for fully reconfigurable imaging[J]. ACS Nano, 2019, 13(4):4613-4620.
[11] 中国光学十大进展[EB/OL]. (2019-12-13)[2019-12-20]. http://www.opticsjournal.net/Columns/ZGGX?type=lntj_index&year=2019.
[12] Yang Z Q, Kang D, Lu F F, et al. Silica nanocone array as a template for fabricating a plasmon induced hot electron photodetector[J]. Photonics Research, 2019, 7(3):294-299.
[13] Huang Q S, Q J, Feng, J T, et al. Realization of waferscale nanogratings with sub-50 nm period through vacancy epitaxy[J]. Nature Communications, 2019, 10:2437-2446.
[14] Li C, Chen K, Guan M X. et al. Extreme nonlinear strong-field photoemission from carbon nanotubes[J]. Nature Communications, 2019, 10:4891-4900.
[15] Danson C, Hillier D, Hopps N, et al. Petawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2015, 1:5-18.
[16] Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7(3):1-53.
[17] LaserlabEurope.[2019-12-20]. https://www.laserlab-europe.eu/news-and-press/issue-26.
[18] Drescher L, Kornilov O, Witting T, et al. Extreme-ultraviolet refractive optics[J]. Nature, 2018, 564(7734):91-94.
[19] Adli E, Ahuja A, Apsimon O, et al. Acceleration of electrons in the plasma wakefield of a proton bunch[J]. Nature, 2018, 561(7723):363-367.
[20] Zeng X M, Zhou K N, Zuo Y L, et al. Multi-petawatt laser facility fully based on optical parametric chirpedpulse amplification[J]. Optics Letters, 2017, 42(10):2014-2017.
[21] Chu Y X, Gan Z B, Liang X Y, et al. High-energy large-aperture Ti:sapphire amplifier for 5 PW laser pulses[J]. Optics Letters, 2015, 40(21):5011-5014.
[22] Fei P, Nie J, Lee J Y, et al. Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens[J]. Advanced Photonics, 2019, 1(1):016002.
[23] Li Y C, Liu X S, Li B J. Single-cell biomagnifier for optical nanoscopes and nanotweezers[J]. Light:Science & Applications, 2019, 8:61-72.
[24] Kuai Y, Chen J X, Tang Xi, et. al. Label-free surfacesensitive photonic microscopy with high spatial resolution using azimuthal rotation illumination[J]. Science Advances, 2019, 5(3):1-10.
[25] Zhuang R Z, Wang X J, Ma W B. et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response[J]. Nature Photonics, 2019, 13:602-608.
[26] Zhang M, Feng L T, Zhou Z Y, et al. Generation of multiphoton quantum states on silicon[J]. Light:Science & Applications, 2019, 8:41-47.
[27] Pan X Z, Yu S, Zhou Y F, et al. Orbital-angular-momentum multiplexed continuous-variable entanglement from four-wave mixing in hot atomic vapor[J]. Physical Review Letters, 2019, 123(7):070506.
[28] Wang S, He D Y, Yin Z Q, et al. Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system[J]. Physical Review X, 2019, 9:021046.
[29] Li Z D, Zhang R, Yin X F, et al. Experimental quantum repeater without quantum memory[J]. Nature Photonics, 2019, 13:644-648.
[30] Guerboukha H, Nallappan K, Cao Y, et al. Planar porous components for low-loss terahertz optics[J]. Advanced Optical Materials, 2019, 7:1900236.
[31] Li H, Yan M, Wan W J, et al. Graphene-coupled terahertz semiconductor lasers for enhanced passive frequency comb operation[J]. Advanced Science, 2019, 6(20):1900460.
[32] Zhao Y C, Wang L, Zhang Y X, et al. High-speed efficient terahertz modulation based on tunable collectiveindividual state conversion within an active 3 nm twodimensional electron gas metasurface[J]. Nano Letters, 2019, 19(11):7588-7597.
[33] Zhang F, Zhu Y X, Yang F, et al. Up to single lane 200 G optical interconnects with silicon photonic modulator[C]//2019 Optical Fiber Communications Conference and Exhibition. Piscataway, N J:IEEE, 2019.
[34] Marpaung D, Yao J P, Capmany J. Integrated microwave photonics[J]. Nature Photonics, 2019, 13:80-90.
[35] Lin G, Zhang S, Hu Y, et al. Nonreciprocal amplification with four-level hot atoms[J]. Physic Review Letters, 2019, 123(3):033902.
[36] Gautam R, Xiang Y X, Lamstein J, et al. Optical forceinduced nonlinearity and self-guiding of light in human red blood cell suspensions[J]. Light:Science & Applications, 2019, 8:31-39.
[37] Xin H B, Sim W J, Namgung B. et al. Quantum biological tunnel junction for electron transfer imaging in live cells[J]. Nature Communications, 2019, 10:3245-3255.
[38] Helgadottir S, Argun A, Volpe G. Digital video microscopy enhanced by deep learning[J]. Optica, 2018, 6(4):506-513.