专题:2019年科技回眸

2019年新型炭电极材料热点回眸

  • 司知蠢 ,
  • 吴晓东 ,
  • 冉锐 ,
  • 翁端
展开
  • 1. 清华大学深圳国际研究生院, 深圳 518055;
    2. 清华大学材料学院, 北京 100084
司知蠢,讲师,研究方向为亚纳米尺度金属催化材料、新型碳材料,电子信箱:si.zhichun@sz.tsinghua.edu.cn

收稿日期: 2019-12-23

  修回日期: 2020-01-08

  网络出版日期: 2020-02-29

基金资助

深圳市基础研究项目(JCYJ20170817161720484)

Hot research topics of carbon electrode in 2019

  • SI Zhichun ,
  • WU Xiaodong ,
  • RAN Rui ,
  • WENG Duan
Expand
  • 1. Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
    2. School of Materials, Tsinghua University, Beijing 100084, China

Received date: 2019-12-23

  Revised date: 2020-01-08

  Online published: 2020-02-29

摘要

2019年,非金属及金属掺杂和负载的炭电极材料在水分解、H2O2合成、燃料电池、金属-空气电池等领域的应用研究是一个热点,主要集中在非金属掺杂炭材料和单原子金属(M)-N-C材料的制备、原理及相关催化反应机制。采用含掺杂元素的有机前驱体高温热解法,正在成为重要的相关材料制备方法。

本文引用格式

司知蠢 , 吴晓东 , 冉锐 , 翁端 . 2019年新型炭电极材料热点回眸[J]. 科技导报, 2020 , 38(1) : 108 -114 . DOI: 10.3981/j.issn.1000-7857.2020.01.009

Abstract

This review presents the researches of nonmetallic and metal doped or loaded carbon electrode materials in the fields of water decomposition, H2O2 synthesis, fuel cell, and metal-air cell, all of which were very hot topics in 2019. These researches mainly concentrate on preparation method, principle of designing and related catalytic reaction mechanisms of nonmetallic or metal doped/loaded carbon materials, such as single atomic metal (M)-N-C materials. High temperature pyrolysis of organic precursors with doping elements is becoming an important method for preparation of related materials.

参考文献

[1] Liu P, Si Z, Wei Lv, et al. Synthesizing multilayer graphene from amorphous activated carbon via ammonia-assisted hydrothermal method[J]. Carbon, 2019, 152:24-32.
[2] Liu J, Zhang Y, Zhang L, et al. Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tunable interlayer distance as a high-rate anode for sodium-ion batteries[J]. Advanced Materials, 2019, 31:1901261-1901271.
[3] Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323:760-764.
[4] Yang L, Shui J, Du Lei, et al. Carbon-based metal-free ORR electrocatalysts for fuel cells:Past, present, and future[J]. Advanced Materials, 2019, 31:1804799-1804819.
[5] Wang W, Shang L, Chang G, et al. Intrinsic carbon-defect-driven electrocatalytic reduction of carbon dioxide[J]. Advanced Materials, 2019, 31:1808276-1808283.
[6] Vlastimil M, Jan L, Stanislava M, et al. Ultrapure graphene is a poor electrocatalyst:Definitive proof of the key role of metallic impurities in graphene-based electrocatalysis[J]. ACS Nano, 2019, 13:1574-1582.
[7] Jia Y, Zhang L, Zhuang L, et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping[J]. Nature Catalysis, 2019, 2:688-695.
[8] Peng X, Zhang L, Chen Z, et al. Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes[J]. Advanced Materials, 2019, 31:1900341-1900348.
[9] Liu L, Wu X, Wang L, et al. Atomic palladium on graphitic carbon nitride as a hydrogen evolution catalyst under visible light irradiation[J]. Communications Chemistry, 2019, doi:10.1038/s42004-019-0117-4.
[10] Yan Q, Wu D, Chu S, et al. Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution[J]. Nature Communications, 2019, 10:4977-4986.
[11] Zhang L, Jia Y, Liu H, et al. Charge polarization from atomic metals on adjacent graphitic layers for enhancing the hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2019, 58:9404-9408.
[12] Bai L, Hsu C, Duncan T, et al. A cobalt-iron double-atom catalyst for the oxygen evolution reaction[J]. Journal of the American Chemical Society, 2019, 141:14190-14199.
[13] Zhang H, Liu Y, Chen T, et al. Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix[J]. Advanced Materials, 2019, 31:1904548-1904555.
[14] Han X, Ling X, Yu D, et al. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution[J]. Advanced Materials, 2019, 31:1905622-1905631.
[15] Wan X, Liu X, Li Y, et al. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for highperformance proton exchange membrane fuel cells[J]. Nature Catalysis, 2019, 2:259-268.
[16] Cheng Y, He S, Lu S, et al. Iron single atoms on graphene as nonprecious metal catalysts for high-temperature polymer electrolyte membrane fuel cells[J]. Advanced Science, 2019, 6:1802066-1802074.
[17] Li J, Chen M, David A, et al. Water oxidation on a mononuclear manganese heterogeneous catalyst[J]. Nature Catalysis, 2018, 1:870-877.
[18] Li W, Min C, Tan F, et al. Bottom-up construction of active sites in a Cu-N4-C catalyst for highly efficient oxygen reduction reaction[J]. ACS Nano, 2019, 13:3177-3187.
[19] Lin Y, Liu P, Ever V, et al. Fabricating single-atom catalysts from chelating metal in open frameworks[J]. Advanced Materials, 2019, 31:1808193-1808202.
[20] Xia C, Xia Y, Zhu P, et al. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte[J]. Science, 2019, 366:226-231.
[21] Jiang K, Seoin B, Austin J, et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination[J]. Nature Communications, 2019, 10:3997-4008.
[22] Sun Y, Luca S, Nastaran R, et al. Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts[J]. Journal of the American Chemical Society, 2019, 141:12372-12381.
文章导航

/