[1] Zhang J, Shang X, Ren H, et al. Modulation of inverse spinel Fe3O4 by phosphorus doping as an industrially promising electrocatalyst for hydrogen evolution[J]. Advanced Materials, 2019, 31(52):1905107.
[2] King L A, Hubert M K A, Capuano C, et al. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser[J]. Nature nanotechnology, 2019, 14(11):1071-1074.
[3] Gao J, Sahli F, Liu C, et al. Solar water splitting with perovskite/silicon tandem cell and TiC-supported Pt nanocluster electrocatalyst[J]. Joule, 2019, 3(12):2930-2941.
[4] Xia C, Xia Y, Zhu P, et al. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte[J]. Science, 2019, 366(6462):226-231.
[5] Fan W, Zhang B, Wang X, et al. Efficient hydrogen peroxide synthesis by metal-free polyterthiophene via photoelectrocatalytic dioxygen reduction[J]. Energy & Environmental Science, 2020, doi:10.1039/c9ee02247c.
[6] Murray A T, Voskian S, Schreier M, et al. Electrosynthesis of hydrogen peroxide by phase-transfer catalysis[J]. Joule, 2019, 3(12):2942-2954.
[7] Jiao J, Lin R, Liu S, et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2[J]. Nature chemistry, 2019, 11(3):222-228.
[8] Gu J, Hsu C S, Bai L, et al. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO[J]. Science, 2019, 364(6445):1091-1094.
[9] Ren S, Joulié D, Salvatore D, et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell[J]. Science, 2019, 365(6451):367-369.
[10] Gong Q, Ding P, Xu M, et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction[J]. Nature Communications, 2019, 10(1):2807.
[11] Xia C, Zhu P, Jiang Q, et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices[J]. Nature Energy, 2019, 4(9):776-785.
[12] Li F, Thevenon A, Rosas-Hernández A, et al. Molecular tuning of CO2-to-ethylene conversion[J]. Nature, 2019, doi:10.1038/s41586-019-1782-2.
[13] Luc W, Fu X, Shi J, et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate[J]. Nature Catalysis, 2019, 2(5):423-430.
[14] Li J, Wang Z, McCallum C, et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction[J]. Nature Catalysis, 2019, 2(12):1124-1131.
[15] Zhang H, Ming J, Zhao J, et al. High-rate, tunable syngas production with artificial photosynthetic cells[J]. Angewandte Chemie International Edition, 2019, 58(23):7718-7722.
[16] Rodrigues R M, Guan X, Iñiguez J A, et al. Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction[J]. Nature Catalysis, 2019, 2(5):407-414.
[17] Tang C, Qiao S Z. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully[J]. Chemical Society Reviews, 2019, 48(12):3166-3180.
[18] Andersen, S Z, Čolić V, Yang S, et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements[J]. Nature, 2019, 570(7762):504-508.
[19] Ling C, Zhang Y, Li Q, et al. New mechanism for N2 reduction:The essential role of surface hydrogenation[J]. Journal of the American Chemical Society, 2019, 141(45):18264-18270.
[20] Hawtof R, Ghosh S, Guarr E, et al. Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system[J]. Science Advances, 2019, 5(1):eaat5778.
[21] Qian X, Zhao Y, Alsaid Y, et al. Artificial phototropism for omnidirectional tracking and harvesting of light[J]. Nature nanotechnology, 2019, 14(11):1048-1055.
[22] Zhang J, Xu G, Tao F, et al. Highly efficient semitransparent organic solar cells with color rendering index approaching 100[J]. Advanced Materials, 2019, 31(10):1807159.
[23] Cui Y, Wang Y, Bergqvist J, et al. Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications[J]. Nature Energy, 2019, 4(9):768-775.
[24] Liao C Y, Chen Y, Lee C C, et al. Processing strategies for an organic photovoltaic module with over 10% efficiency[J]. Joule, 2019, doi:10.1016/j.joule.2019.11.006.
[25] Dong H, Xu F, Sun Z, et al. In situ interface engineering for probing the limit of quantum dot photovoltaic devices[J]. Nature Nanotechnology, 2019, 14(10):950-956.
[26] Chen Y, Li N, Wang L, et al. Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells[J]. Nature Communications, 2019, 10(1):1112.
[27] Yang S, Dai J, Yu Z, et al. Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells[J]. Journal of the American Chemical Society, 2019, 141(14):5781-5787.
[28] Wang Y, Wu T, Barbaud J, et al. Stabilizing heterostructures of soft perovskite semiconductors[J]. Science, 2019, 365(6454):687-691.
[29] Wang L, Zhou H, Hu J, et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells[J]. Science, 2019, 363(6424):265-270.
[30] Yang S, Chen S, Mosconi E, et al. Stabilizing halide perovskite surfaces for solar cell operation with widebandgap lead oxysalts[J]. Science, 2019, 365(6452):473-478.
[31] Wang Y, Wu T, Barbaud J, et al. Stabilizing heterostructures of soft perovskite semiconductors[J]. Science, 2019, 365(6454):687-691.
[32] Cui X, Su H Y, Chen R, et al. Room-temperature electrochemical water-gas shift reaction for high purity hydrogen production[J]. Nature Communications, 2019, 10(1):86.
[33] Zou Y Q, von Wolff N, Anaby A, et al. Ethylene glycol as an efficient and reversible liquid-organic hydrogen carrier[J]. Nature Catalysis, 2019, 2(5):415-422.
[34] Cao L, Liu W, Luo Q, et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2[J]. Nature, 2019, 565(7741):631-635.
[35] Lang R, Xi W, Liu J C, et al. Non defect-stabilized thermally stable single-atom catalyst[J]. Nature Ccommunications, 2019, 10(1):234.
[36] Zhang Z, Chen Y, Zhou L, et al. The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring[J]. Nature Communications, 2019, 10(1):1657.
[37] Yao Y, Huang Z, Xie P, et al. High temperature shockwave stabilized single atoms[J]. Nature Nanotechnology, 2019, 14(9):851-857.
[38] He X, He Q, Deng Y, et al. A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation[J]. Nature Communications, 2019, 10(1):3363.
[39] Tian X, Zhao X, Su Y Q, et al. Engineering bunched PtNi alloy nanocages for efficient oxygen reduction in practical fuel cells[J]. Science, 2019, 366(6467):850-856.
[40] Luo M, Zhao Z, Zhang Y, et al. PdMo bimetallene for oxygen reduction catalysis[J]. Nature, 2019, 574(7776):81-85.
[41] Wan X, Liu X, Li Y, et al. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for highperformance proton exchange membrane fuel cells[J]. Nature Catalysis, 2019, 2(3):259-268.
[42] Wang Y, Yang Y, Jia S, et al. Synergistic Mn-Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells[J]. Nature Communications, 2019, 10(1):1506.
[43] Yuan Y, Wang J, Adimi S, et al. Zirconium nitride catalysts surpass platinum for oxygen reduction[J]. Nature Materials, 2019, doi:10.1038/s41563-019-0535-9.
[44] Wang X X, Swihart M T, Wu G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation[J]. Nature Catalysis, 2019, 2(7):578-589.
[45] Qiao Y, Jiang K, Deng H, et al. A high-energy-density and long-life lithium-ion battery via reversible oxide-peroxide conversion[J]. Nature Catalysis, 2019, 2(11):1035-1044.
[46] Qiao Y, Wang Q, Mu X, et al. Advanced hybrid electrolyte Li-O2 battery realized by dual superlyophobic membrane[J]. Joule, 2019, 3(12):2986-3001.
[47] Chen L, Fan X, Hu E, et al. Achieving high energy density through increasing the output voltage:A highly reversible 5.3 V battery[J]. Chem, 2019, 5(4):896-912.
[48] Li C, Liu S, Shi C, et al. Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes[J]. Nature Communications, 2019, 10(1):1363.
[49] Zheng J, Zhao Q, Tang T, et al. Reversible epitaxial electrodeposition of metals in battery anodes[J]. Science, 2019, 366(6465):645-648.
[50] Wan J, Xie J, Kong X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nature Nanotechnology, 2019,14(7):705-711.
[51] Han F, Westover A S, Yue J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4(3):187-196.
[52] Severson K A, Attia P M, Jin N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5):383-391.
[53] Li W, Zhu J, Xia Y, et al. Data-driven safety envelope of Lithium-Ion batteries for electric vehicles[J]. Joule, 2019, 3(11):2703-2715.
[54] Fu M C, Shang R, Zhao B, et al. Photocatalytic decarboxylative alkylations mediated by triphenylphosphine and sodium iodide[J]. Science, 2019, 363(6434):1429-1434.
[55] Luo N, Montini T, Zhang J, et al. Visible-light-driven coproduction of diesel precursors and hydrogen from lignocellulose-derived methylfurans[J]. Nature Energy, 2019, 4(7):575-584.
[56] Yang M, Qi H, Liu F, et al. One-pot production of cellulosic ethanol via tandem catalysis over a multifunctional Mo/Pt/WOx catalyst[J]. Joule, 2019, 3(8):1937-1948.