专题:2019年科技回眸

2019年清洁能源开发热点回眸

  • 李存璞 ,
  • 唐红安 ,
  • 魏子栋
展开
  • 重庆大学化学化工学院, 重庆 400044
李存璞,副教授,研究方向为锂硫电池、燃料电池,电子信箱:lcp@cqu.edu.cn

收稿日期: 2019-12-13

  修回日期: 2019-12-30

  网络出版日期: 2020-02-29

基金资助

国家自然科学基金项目(21606027);中央高校基本科研业务费专项(2019CDJGFHX001)

Clean energy in 2019-A research hotspots

  • LI Cunpu ,
  • TANG Hongan ,
  • WEI Zidong
Expand
  • Chongqing University, School of Chemistry and Chemical Engineering, Chongqing 400044, China

Received date: 2019-12-13

  Revised date: 2019-12-30

  Online published: 2020-02-29

摘要

清洁能源开发研究在2019年继续保持火热的发展劲头,取得了一系列丰硕的研究成果。小分子催化转化研究为实现清洁能源融合发展,能源系统零排放持续发力;太阳能电池的稳定性和效率突破不断,燃料电池技术逐渐完善以及大数据与机器学习引入锂电池领域进一步促进新能源汽车时代的到来。本文评述了小分子催化转化,太阳能电池、燃料电池、锂电池及生物质能等能源技术在2019年取得的一些进展,并对目前清洁能源的发展状况进行了分析与总结。

本文引用格式

李存璞 , 唐红安 , 魏子栋 . 2019年清洁能源开发热点回眸[J]. 科技导报, 2020 , 38(1) : 125 -136 . DOI: 10.3981/j.issn.1000-7857.2020.01.011

Abstract

In 2019, many exciting breakthroughs were achieved in the clean energy field. The progress made on small molecule catalytic transformation has contributed to the integrated development of clean energy and the continuous development of zeroemission energy system. Breakthroughs have been achieved in stability and efficiency of solar cells and fuel cell technologies. Besides, big data and machine learning have been introduced into the field of lithium batteries to promote further development of new energy vehicles. Lithium batteries and biomass energies are also reviewed in this paper.

参考文献

[1] Zhang J, Shang X, Ren H, et al. Modulation of inverse spinel Fe3O4 by phosphorus doping as an industrially promising electrocatalyst for hydrogen evolution[J]. Advanced Materials, 2019, 31(52):1905107.
[2] King L A, Hubert M K A, Capuano C, et al. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser[J]. Nature nanotechnology, 2019, 14(11):1071-1074.
[3] Gao J, Sahli F, Liu C, et al. Solar water splitting with perovskite/silicon tandem cell and TiC-supported Pt nanocluster electrocatalyst[J]. Joule, 2019, 3(12):2930-2941.
[4] Xia C, Xia Y, Zhu P, et al. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte[J]. Science, 2019, 366(6462):226-231.
[5] Fan W, Zhang B, Wang X, et al. Efficient hydrogen peroxide synthesis by metal-free polyterthiophene via photoelectrocatalytic dioxygen reduction[J]. Energy & Environmental Science, 2020, doi:10.1039/c9ee02247c.
[6] Murray A T, Voskian S, Schreier M, et al. Electrosynthesis of hydrogen peroxide by phase-transfer catalysis[J]. Joule, 2019, 3(12):2942-2954.
[7] Jiao J, Lin R, Liu S, et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2[J]. Nature chemistry, 2019, 11(3):222-228.
[8] Gu J, Hsu C S, Bai L, et al. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO[J]. Science, 2019, 364(6445):1091-1094.
[9] Ren S, Joulié D, Salvatore D, et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell[J]. Science, 2019, 365(6451):367-369.
[10] Gong Q, Ding P, Xu M, et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction[J]. Nature Communications, 2019, 10(1):2807.
[11] Xia C, Zhu P, Jiang Q, et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices[J]. Nature Energy, 2019, 4(9):776-785.
[12] Li F, Thevenon A, Rosas-Hernández A, et al. Molecular tuning of CO2-to-ethylene conversion[J]. Nature, 2019, doi:10.1038/s41586-019-1782-2.
[13] Luc W, Fu X, Shi J, et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate[J]. Nature Catalysis, 2019, 2(5):423-430.
[14] Li J, Wang Z, McCallum C, et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction[J]. Nature Catalysis, 2019, 2(12):1124-1131.
[15] Zhang H, Ming J, Zhao J, et al. High-rate, tunable syngas production with artificial photosynthetic cells[J]. Angewandte Chemie International Edition, 2019, 58(23):7718-7722.
[16] Rodrigues R M, Guan X, Iñiguez J A, et al. Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction[J]. Nature Catalysis, 2019, 2(5):407-414.
[17] Tang C, Qiao S Z. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully[J]. Chemical Society Reviews, 2019, 48(12):3166-3180.
[18] Andersen, S Z, Čolić V, Yang S, et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements[J]. Nature, 2019, 570(7762):504-508.
[19] Ling C, Zhang Y, Li Q, et al. New mechanism for N2 reduction:The essential role of surface hydrogenation[J]. Journal of the American Chemical Society, 2019, 141(45):18264-18270.
[20] Hawtof R, Ghosh S, Guarr E, et al. Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system[J]. Science Advances, 2019, 5(1):eaat5778.
[21] Qian X, Zhao Y, Alsaid Y, et al. Artificial phototropism for omnidirectional tracking and harvesting of light[J]. Nature nanotechnology, 2019, 14(11):1048-1055.
[22] Zhang J, Xu G, Tao F, et al. Highly efficient semitransparent organic solar cells with color rendering index approaching 100[J]. Advanced Materials, 2019, 31(10):1807159.
[23] Cui Y, Wang Y, Bergqvist J, et al. Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications[J]. Nature Energy, 2019, 4(9):768-775.
[24] Liao C Y, Chen Y, Lee C C, et al. Processing strategies for an organic photovoltaic module with over 10% efficiency[J]. Joule, 2019, doi:10.1016/j.joule.2019.11.006.
[25] Dong H, Xu F, Sun Z, et al. In situ interface engineering for probing the limit of quantum dot photovoltaic devices[J]. Nature Nanotechnology, 2019, 14(10):950-956.
[26] Chen Y, Li N, Wang L, et al. Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells[J]. Nature Communications, 2019, 10(1):1112.
[27] Yang S, Dai J, Yu Z, et al. Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells[J]. Journal of the American Chemical Society, 2019, 141(14):5781-5787.
[28] Wang Y, Wu T, Barbaud J, et al. Stabilizing heterostructures of soft perovskite semiconductors[J]. Science, 2019, 365(6454):687-691.
[29] Wang L, Zhou H, Hu J, et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells[J]. Science, 2019, 363(6424):265-270.
[30] Yang S, Chen S, Mosconi E, et al. Stabilizing halide perovskite surfaces for solar cell operation with widebandgap lead oxysalts[J]. Science, 2019, 365(6452):473-478.
[31] Wang Y, Wu T, Barbaud J, et al. Stabilizing heterostructures of soft perovskite semiconductors[J]. Science, 2019, 365(6454):687-691.
[32] Cui X, Su H Y, Chen R, et al. Room-temperature electrochemical water-gas shift reaction for high purity hydrogen production[J]. Nature Communications, 2019, 10(1):86.
[33] Zou Y Q, von Wolff N, Anaby A, et al. Ethylene glycol as an efficient and reversible liquid-organic hydrogen carrier[J]. Nature Catalysis, 2019, 2(5):415-422.
[34] Cao L, Liu W, Luo Q, et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2[J]. Nature, 2019, 565(7741):631-635.
[35] Lang R, Xi W, Liu J C, et al. Non defect-stabilized thermally stable single-atom catalyst[J]. Nature Ccommunications, 2019, 10(1):234.
[36] Zhang Z, Chen Y, Zhou L, et al. The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring[J]. Nature Communications, 2019, 10(1):1657.
[37] Yao Y, Huang Z, Xie P, et al. High temperature shockwave stabilized single atoms[J]. Nature Nanotechnology, 2019, 14(9):851-857.
[38] He X, He Q, Deng Y, et al. A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation[J]. Nature Communications, 2019, 10(1):3363.
[39] Tian X, Zhao X, Su Y Q, et al. Engineering bunched PtNi alloy nanocages for efficient oxygen reduction in practical fuel cells[J]. Science, 2019, 366(6467):850-856.
[40] Luo M, Zhao Z, Zhang Y, et al. PdMo bimetallene for oxygen reduction catalysis[J]. Nature, 2019, 574(7776):81-85.
[41] Wan X, Liu X, Li Y, et al. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for highperformance proton exchange membrane fuel cells[J]. Nature Catalysis, 2019, 2(3):259-268.
[42] Wang Y, Yang Y, Jia S, et al. Synergistic Mn-Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells[J]. Nature Communications, 2019, 10(1):1506.
[43] Yuan Y, Wang J, Adimi S, et al. Zirconium nitride catalysts surpass platinum for oxygen reduction[J]. Nature Materials, 2019, doi:10.1038/s41563-019-0535-9.
[44] Wang X X, Swihart M T, Wu G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation[J]. Nature Catalysis, 2019, 2(7):578-589.
[45] Qiao Y, Jiang K, Deng H, et al. A high-energy-density and long-life lithium-ion battery via reversible oxide-peroxide conversion[J]. Nature Catalysis, 2019, 2(11):1035-1044.
[46] Qiao Y, Wang Q, Mu X, et al. Advanced hybrid electrolyte Li-O2 battery realized by dual superlyophobic membrane[J]. Joule, 2019, 3(12):2986-3001.
[47] Chen L, Fan X, Hu E, et al. Achieving high energy density through increasing the output voltage:A highly reversible 5.3 V battery[J]. Chem, 2019, 5(4):896-912.
[48] Li C, Liu S, Shi C, et al. Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes[J]. Nature Communications, 2019, 10(1):1363.
[49] Zheng J, Zhao Q, Tang T, et al. Reversible epitaxial electrodeposition of metals in battery anodes[J]. Science, 2019, 366(6465):645-648.
[50] Wan J, Xie J, Kong X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nature Nanotechnology, 2019,14(7):705-711.
[51] Han F, Westover A S, Yue J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4(3):187-196.
[52] Severson K A, Attia P M, Jin N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5):383-391.
[53] Li W, Zhu J, Xia Y, et al. Data-driven safety envelope of Lithium-Ion batteries for electric vehicles[J]. Joule, 2019, 3(11):2703-2715.
[54] Fu M C, Shang R, Zhao B, et al. Photocatalytic decarboxylative alkylations mediated by triphenylphosphine and sodium iodide[J]. Science, 2019, 363(6434):1429-1434.
[55] Luo N, Montini T, Zhang J, et al. Visible-light-driven coproduction of diesel precursors and hydrogen from lignocellulose-derived methylfurans[J]. Nature Energy, 2019, 4(7):575-584.
[56] Yang M, Qi H, Liu F, et al. One-pot production of cellulosic ethanol via tandem catalysis over a multifunctional Mo/Pt/WOx catalyst[J]. Joule, 2019, 3(8):1937-1948.
文章导航

/