专题:2019年科技回眸

2019年氢燃料电池研发热点回眸

  • 侯明 ,
  • 邵志刚 ,
  • 俞红梅 ,
  • 衣宝廉
展开
  • 中国科学院大连化学物理研究所, 大连 116023
侯明,研究员,研究方向为燃料电池,电子信箱:houming@dicp.ac.cn

收稿日期: 2019-12-31

  修回日期: 2020-01-06

  网络出版日期: 2020-02-29

基金资助

中国工程院咨询项目(2018-XZ-08-04);中国科学院战略性先导科技专项(XDA21090100)

Review of hot topics on hydrogen fuel cell in 2019

  • HOU Ming ,
  • SHAO Zhigang ,
  • YU Hongmei ,
  • YI Baolian
Expand
  • Dalian Institute of Chemical Physics, Chinese Academy Sciences, Dalian 116023, China

Received date: 2019-12-31

  Revised date: 2020-01-06

  Online published: 2020-02-29

摘要

从政府政策环境、企业行动、示范运行等方面回顾了2019年氢燃料电池汽车的热点;阐述了氢燃料电池催化剂、膜、膜电极、双极板、电堆的关键技术、研究成果及产品工程开发进展;提出了中国氢燃料电池发展建议。

本文引用格式

侯明 , 邵志刚 , 俞红梅 , 衣宝廉 . 2019年氢燃料电池研发热点回眸[J]. 科技导报, 2020 , 38(1) : 137 -150 . DOI: 10.3981/j.issn.1000-7857.2020.01.012

Abstract

Firstly we review the relevant hot topics of hydrogen fuel cell vehicles in 2019 from the aspects of government policy environment, enterprise actions, vehicle demonstration, etc. Secondly, we elucidate the key technical points, important research results and engineering development progress of catalysts, membranes, membrane electrode assemblies (MEAs), bipolar plates and stacks for hydrogen fuel cells. Finally, we put forward some suggestions for hydrogen fuel cell development in China.

参考文献

[1] 欧洲氢能最强音:2030年前拟520亿欧元投资清洁氢能助力零排放[EB/OL].[2019-11-22]. https://www.hnsgtd.com/news/bkbbddbabddlbfd.html.
[2] 最低170万/辆, 厦门金旅、云南五龙中标佛山386辆氢公交采购项目[EB/OL].[2019-12-06]. http://www.trendbank.net/detail/12064/1/34.
[3] 39家跨国企业驰骋中国氢能市场[EB/OL].[2019-11-20]. http://www.xch3.com/Home/NewsDetail?newsId=6083
[4] 中国汽车报. 氢燃料电池汽车走进五城联合国示范城市巡展[EB/OL].[2019-12-12]. https://auto.qq.com/a/20181112/003867.htm.
[5] 东方财富网. 上海清能与江铃合作推出世界上最大的燃料电池重型卡车[EB/OL].[2019-12-27]. https://baijiahao.baidu.com/s?id=1645810637628626282&wfr=spider&for=pc.
[6] 欧洲氢能路线图:欧洲能源转型的可持续化发展途径[EB/OL].[2019-12-19]. http://www.360doc.com/content/19/0419/08/53726017_829817765.shtml.
[7] 美国船级社发布《船舶和近海燃料电池动力系统应用指南》[EB/OL].[2019-12-23]. http://www.gdasi.org.cn/index.php/xydt/1535.html.
[8] 国内首台500kW级船用燃料电池系统发布[EB/OL].[2019-12-06]. 2019-http://www.eworldship.com/html/2019/Manufacturer_1206/155054.html.
[9] 10大数据读懂2019上半年燃料电池产业生态[EB/OL].[2019-12-26]. http://www.sohu.com/a/329449920_131990.
[10] 牛秀芳. 2019年我国已建成61座加氢站, 52座投入运营[EB/OL].[2020-01-05]. https://mp.weixin.qq.com/s/kba2oOR9tqwF5i4HhV3Y_g.
[11] 中法两国将合建氢能公司[EB/OL].[2019-12-07]. http://ccnews.people.com.cn/n1/2019/1107/c141677-31442423.html.
[12] 中石化首座油氢合建站正式建成[EB/OL].[2019-12-21]. http://www.xinhuanet.com/2019-07/01/c_11246959-16.htm.
[13] 中国基金网. 国内首个智能加氢站运营系统正式在江苏如皋加氢站投用[EB/OL].[2019-12-28]. http://www.trendbank.net/detail/9702/1/34.
[14] 延庆首座加氢站开工建设将为北京冬奥会提供保障工作[EB/OL].[2019-12-03]. http://bj.cri.cn/20191203/3ae6152c-de72-282f-6eec-a786d8996463.html.
[15] 川崎重工建造全球首艘液态氢运输船下水[EB/OL].[2019-12-12]. http://www.eworldship.com/html/2019/NewShipUnderConstrunction_1212/155248.html.
[16] 曹龙生, 蒋尚峰, 秦晓平, 等. 单分散的超小PtCu合金的制备及其氧还原电催化性能[J]. 中国科学(化学), 2017, 47(5):683-691.
[17] Tian X, Zhao X, Su Y Q, et al. Engineering bunched PtNi alloy nanocages for efficient oxygen reduction in practical fuel cells[J]. Science, 2019, 366(6467):850-856.
[18] Cao Liang, Zhao Z P, Liu Z Y, et al. Differential surface elemental distribution leads to significantly enhanced stability of PtNi-based ORR catalysts[J]. Matter, 2019, doi:10.1016/j.matt.2019.07.015.
[19] Chong L, Wen J, Kubal J, et al. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks[J]. Science, 2018, 362(6420):1276-1281.
[20] Jiang J X, Ding W, Li Wei, et al. Freestanding single-atom-layer Pd-based catalysts:Oriented splitting of energy bands for unique stability and activity[J]. Chemistry, 2019, doi:10.1016/j.chempr.2019.11.003.
[21] Jiang Z L, Sun W M, Shang H S, et al. Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions[J]. Energy & Environmental Science, 2019, doi:10.1039/C9EE02974E.
[22] Yang Y, Zeng R, Xiong Y, et al. Cobalt-based nitridecore oxide-shell oxygen reduction electrocatalysts[J]. Journal of the American Chemical Society, 2019, 141(49):19241-19245.
[23] Qiao M F, Wang Y, Wang Q, et al. Hierarchically ordered porous carbon with atomically dispersed FeN4 for Ultra-efficient oxygen reduction reaction in PEMFC[J]. Angewandte Chemie, 2019, doi:10.1021/jacs.9b10809.
[24] Shehzad M A, Wang Y, Yasmin A, et al. Biomimetic nanocones that enable high ion permselectivity[J]. Angewandte Chemie-International Edition, 2019, 58(36):12646-12654.
[25] Zhao D, Yi B L, Zhang H M, et al. Cesium substituted 12-tungstophosphoric (CsxH3-xPW12O40) loaded on ceria-degradation mitigation in polymer electrolyte membranes[J]. Journal of Power Sources, 2009, doi:10.1016/j.jpowsour.2008.12.133.
[26] Yao Y F, Liu J G, Liu W M, et al. Vitamin E assisted polymer electrolyte fuel cells[J]. Energy Environ Science, 2014(7):3362-3370.
[27] Vinothkannan M, Hariprasad R, Ramakrishnan S, et al. Potential bifunctional filler (CeO2-ACNTs) for nafion matrix toward extended electrochemical power density and durability in proton-exchange membrane fuel cells operating at reduced relative humidity[J]. ACS Sustainable Chemistry & Engineering 2019, 7:12847-12857.
[28] Karuppannan M, Kim Y, Gok S, et al. A highly durable carbon-nanofiber-supported Pt-C core-shell cathode catalyst for ultra-low Pt loading proton exchange membrane fuel cells:Facile carbon encapsulation[J]. Energy & Environmental Science, 2019, 12(9):2820-2829.
[29] Ott S, Orfanidi A, Schmies H, et al. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells[J]. Nature Materials, 2020, 19(1):77-85.
[30] Sun Y, Cui L, Gong J, et al. Design of a catalytic layer with hierarchical proton transport structure:the role of Nafion nanofiber[J]. ACS Sustainable Chemistry & Engineering, 2018, 7(3):2955-2963.
[31] Song Z, Norouzi B M, Liu H, et al. Ultralow loading and high-performing Pt catalyst for a polymer electrolyte membrane fuel cell anode achieved by atomic layer deposition[J]. ACS Catalysis, 2019, 9(6):5365-5374.
[32] Suzuki T. Fuel cell stack technology of Toyota[J]. ECS transactions, 2016, 75(14):423-434.
[33] Zhang H B, Lin G Q, Hou M, et al. CrN/Cr multilayer coating on 316L stainless steel as bipolar plates for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2012, doi:10.1016/j.jpowsour.2011.09.091.
[34] Jannat S, Rashtchi H, Atapour M, et al. Preparation and performance of nanometric Ti/TiN multi-layer physical vapor deposited coating on 316L stainless steel as bipolar plate for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2019, doi:10.1016/j.jpowsour.2019.226818.
[35] Yi P, Zhang W, Bi F, et al. Microstructure and properties of a-C films deposited under different argon flow rate on stainless steel bipolar plates for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2019(410/411):188-195.
[36] Bao Z, Niu Z, Jiao K. Analysis of single-and twophase flow characteristics of 3D fine mesh flow field of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2019, doi:10.1016/j.jpowsour.2019.226995.
[37] He L, Hou M, Gao Y Y, et al. A novel three-dimensional flow field design and experimental research for proton exchange membrane fuel cells[J]. Energy Conversion and Management, 2020, 205(1):112335.
[38] Qiua D, Peng L F, Yi P Y, et al. Flow channel design for metallic bipolar plates in proton exchange membrane fuel cells:Experiments[J]. Energy Conversion and Management, 2018(17):814-823.
[39] Penga Z, Bergbreiter C, Barbir F, et al. Numerical and experimental analysis of liquid water distribution in PEM fuel cells[J]. Energy Conversion and Management, 2019(189):167-183
[40] Ifrek L, Rosini S, Cauffet G, et al. Fault detection for polymer electrolyte membrane fuel cell stack by external magnetic field[J]. Electrochimica Acta, 2019, doi:10.1016/j.electacta.2019.04.193.
[41] Stepanč M, Juričić Đ, Boškoski P. Fault detection of fuel cell systems based on statistical assessment of impedance data[J]. Energy Conversion and Management, 2019(195):76-85.
[42] Umezawa K, Matsui K, Ikeda Y. Technology for estimation of fuel cell stack temperature using transient heat transfer simulation in cell stacking direction[J]. Honda R & D Review, 2019(10):41-48.
[43] 侯明, 邵志刚, 衣宝廉. 车用燃料电池电堆比功率提升的技术途径探讨[J]. 中国工程科学, 2019, 21(3):84-91.
文章导航

/