专题:2019年科技回眸

2019年无人机热点回眸

  • 段海滨 ,
  • 申燕凯 ,
  • 赵彦杰 ,
  • 范彦铭 ,
  • 王寅 ,
  • 牛轶峰 ,
  • 魏晨 ,
  • 罗德林
展开
  • 1. 北京航空航天大学自动化科学与电气工程学院, 北京 100083;
    2. 中国电子科技集团公司电子科学研究院, 北京 100041;
    3. 中国航空工业集团公司沈阳飞机设计研究所, 沈阳 110035;
    4. 南京航空航天大学航天学院, 南京 210016;
    5. 国防科技大学智能科学学院, 长沙 410073;
    6. 厦门大学航空航天学院, 厦门 361102
段海滨,教授,研究方向为无人机集群仿生自主控制、计算机仿生视觉和仿生智能计算,电子信箱:hbduan@buaa.edu.cn

收稿日期: 2019-12-21

  修回日期: 2020-01-02

  网络出版日期: 2020-02-29

基金资助

科技创新2030-“新一代人工智能”重大项目(2018AAA0102403);国家自然科学基金项目(91948204,U19B2029,91648205)

Review of technological hotspots of unmanned aerial vehicle in 2019

  • DUAN Haibin ,
  • SHEN Yankai ,
  • ZHAO Yanjie ,
  • FAN Yanming ,
  • WANG Yin ,
  • NIU Yifeng ,
  • WEI Chen ,
  • LUO Delin
Expand
  • 1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 10083, China;
    2. China Academy of Electronics and Information Technology, China Electroncs Technology Group Corporation, Beijing 100041, China;
    3. Shenyang Aircraft Design and Research Institute, Aviation Industry Corporation of China, Shenyang 110035, China;
    4. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 21006, China;
    5. College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China;
    6. School of Aerospace Engineering, Xiamen University, Xiamen 361102, China

Received date: 2019-12-21

  Revised date: 2020-01-02

  Online published: 2020-02-29

摘要

在科技创新牵引和管控政策的推动下,无人机产业焕发出新的活力。2019年,无人机自主控制及应用技术又取得长足发展,呈现出一些新的发展态势。从无人机新战略、无人机赛事、技术革新、实战化等多个角度,对2019年无人机的科技热点及发展趋势进行了总结。分析表明,无人机集群智能作为一项颠覆性技术和作战理念,将成为未来无人机研究发展的重要方向。

本文引用格式

段海滨 , 申燕凯 , 赵彦杰 , 范彦铭 , 王寅 , 牛轶峰 , 魏晨 , 罗德林 . 2019年无人机热点回眸[J]. 科技导报, 2020 , 38(1) : 170 -187 . DOI: 10.3981/j.issn.1000-7857.2020.01.015

Abstract

Under the promotion of science and technology innovation and relevant policies, the UAV industry will gain new vigor and vitality. In 2019, unmanned aerial vehicle (UAV) autonomous control and application technology has achieved great progress and presents some new trends in the meantime. This paper summarizes and analyzes the hot topics and the new development trends of UAV in 2019 from the viewpoints including UAV new strategies, UAV competition events, technological innovations and practical applications. As a subversive technology and combat operational concept, UAV swarm intelligence will become an important research direction for future UAV development.

参考文献

[1] 段海滨, 邱华鑫. 基于群体智能的无人机集群自主控制[M]. 北京:科学出版社, 2018.
[2] 段海滨, 李沛. 基于生物群集行为的无人机集群控制[J]. 科技导报, 2017, 35(7):17-25.
[3] 段海滨, 申燕凯, 王寅, 等. 2018无人机领域热点评述[J]. 科技导报, 2019, 37(3):82-90.
[4] Trump D. Executive Order on Maintaining American Leadership in Artificial Intelligence[J]. Executive Order, 2019(5):11.
[5] US air force science and technology strategy[EB/OL]. (2019-04-17)[2019-12-12]. https://www.af.mil/Portals/1/documents/2019%20SAF%20story%20attachments/Air%20Force%20Science%20and%20Technology%20Strategy.pdf.
[6] 《数据和人工智能经济发展计划》[EB/OL]. (2019-02-15)[2019-12-12]. https://www.chinainfo.org.cn/article/detail?id=230194.
[7] 《新一代人工智能发展规划》[EB/OL]. (2017-07-20)[2019-12-12].http://www.gov.cn/xinwen/2017-07/20/content_5212064.htm.
[8] 全球人工智能战略与政策观察(2019)[EB/OL]. (2019-9)[2019-12-12]. http://aiiaorg.cn/uploadfile/2019/0829/20190829102318489.pdf.
[9] 深圳市新一代人工智能发展行动计划[EB/OL]. (2017-07-20)[2019-12-12]. http://www.sz.gov.cn/zfgb/zcjd/2019-09/t20190918_18215925.htm.
[10] "十三五"国家战略性新兴产业发展规划[EB/OL]. (2016-11-09)[2019-12-12]. http://www.moe.gov.cn/jyb_sy/sy_gwywj/201612/t20161220_292496.html.
[11] 四川省通用航空产业发展规划(2019-2025年)[EB/OL]. (2019-07-19)[2019-12-12]. http://fgw.sc.gov.cn/sfgw/gjscydt/2019-07/19/content_6d4f831931bc465db5f0-1ec89c0f5a1a.shtml.
[12] 工业级无人机投资白皮书(2019)[EB/OL]. (2019-11-18)[2019-12-12]. http://www.dooland.com/magazine/128688.
[13] 深圳市民用微轻型无人机管理暂行办法[EB/OL]. (2019-01-03)[2019-12-12]. http://www.sz.gov.cn/cn/xxgk/zfxxgj/zwdt/201901/t20190103_15219394.htm.
[14] 浙江省无人驾驶航空器公共安全管理规定[EB/OL]. (2019-04-04)[2019-12-12]. http://www.zj.gov.cn/art/2019/4/4/art_1554467_32409199.html.
[15] 特定类无人机试运行管理规程(暂行)[EB/OL]. (2019-06-25)[2019-12-12]. http://www.caac.gov.cn/XXGK/XXGK/JYTNDF/201910/t20191028_199137.html.
[16] 民用机场无人驾驶航空器系统监测系统通用技术要求[EB/OL]. (2019-08-05)[2019-12-12]. http://www.chinaairports.org.cn/.
[17] 轻小型民用无人机飞行动态数据管理规定[EB/OL]. (2019-11-05)[2019-12-12]. http://www.caac.gov.cn/XXGK/XXGK/TZTG/201911/P020191120352957148255.pdf.
[18] Hang K Y, Lyu X M, et al. Perching and resting-A paradigm for UAV maneuvering with modularized landing gears[J]. Science Robotics. 2019, 4(28):15-23.
[19] Xiong H, Hu J, Diao X M. Optimize energy efficiency of quadrotors via arm rotation[J]. Journal of Dynamic Systems Measurement and Control, 2019, 141(9):12-21.
[20] US air force's unmanned XQ-58A valkyrie performs first flight[EB/OL]. (2019-3-8)[2019-12-12]. https://www.janes.com/article/87107/us-air-force-s-unmannedxq-58a-valkyrie-performs-first-flight.
[21] US air force XQ-58A valkyrie completes second flight[EB/OL]. (2019-6-17)[2019-12-12]. https://www.janes.com/article/89318/us-air-force-xq-58a-valkyrie-completes-second-flight.
[22] Stingray unmanned tanker flies for first time[EB/OL]. (2019-9-19)[2019-12-12]. https://www.janes.com/article/91420/stingray-unmanned-tanker-flies-for-firsttime.
[23] 牛轶峰, 沈林成, 李杰, 等. 无人-有人机协同控制关键问题[J]. 中国科学(信息科学), 2019, 49(5):538-554.
[24] 申燕凯, 段海滨, 邓亦敏, 等. 仿鸽群被动式惯性应急避障的无人机集群飞行验证[J]. 中国科学(信息科学), 2019, 49(10):1343-1352.
[25] 党爱国, 王坤, 王延密, 等. 无人机集群作战概念发展对未来战场攻防影响[J]. 战术导弹技术, 2019, 5(1):37-41.
[26] 段海滨, 邱华鑫, 陈琳, 等. 无人机自主集群技术研究展望[J]. 科技导报, 2018, 36(21):90-98.
[27] UK announces plans to develop swarm squadrons of drones[EB/OL]. (2019-2-12)[2019-12-12]. https://www.airforce-technology.com/news/uk-swarm-squadronsdrones/.
[28] Europeans propose siccing self-learning drone swarms on air defenses[EB/OL]. (2019-10-22)[2019-12-12]. https://www.defensenews.com/global/europe/2019/10/22/europeans-propose-siccing-self-learning-drone-swarms-on-air-defenses/.
[29] Sun Y B, Deng Y M, Duan H B. Bionic visual closerange navigation control system for the docking stage of probe-and-drogue autonomous aerial refueling[J]. Aerospace Science and Technology, 2019(9):136-149.
[30] Shen M C, How J P. Active Perception in adversarial scenarios using maximum entropy deep reinforcement learning[J]. arXiv, 2019(1902):05644.
[31] Fathian K, Khosoussi K, Tian Y L, et al. CLEAR:A consistent lifting, embedding, and alignment rectification algorithm for multi-view data association[J]. arXiv, 2019(1902):02256.
[32] Quigley M, Mohta K, Shivakumar S S, et al. The open vision computer:An integrated sensing and compute system for mobile robots[C]//International Conference on Robotics and Automation 2019, Montreal, Canada:IEEE, 2019:1834-1840.
[33] The influence of limited visual sensing on the reynolds flocking algorithm[C]//Third IEEE International Conference on Robotic Computing 2019, Naples, Italy:IEEE, 2019:138-145.
[34] Xu Y, Duan H B. On-board visual navigation system for unmanned aerial vehicles autonomous aerial refueling[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(4):1193-1203.
[35] Duan H B, Xin L, Chen S J. Robust cooperative target detection for a vision based UAVs autonomous aerial refueling platform via the contrast sensitivity mechanism of eagle's eye[J]. IEEE Aerospace and Electronic Systems Magazine, 2019, 33(3):18-30.
[36] Wang X H, Duan H B. Hierarchical visual attention model for saliency detection inspired by avian visual pathways[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(2):540-552.
[37] Amato C, Konidaris G, Kaelbling L P, et al. Modeling and planning with macro-actions in decentralized POMDPs[J]. Journal of Artificial Intelligence Research, 2019(64):817-859.
[38] R-MADDPG for partially observable environments and limited communication[EB/OL]. (2019-5-5)[2019-12-12]. https://openreview.net/pdf?id=Ske_NJK2s4.
[39] Talebpour Z, Martinoli A. Adaptive risk-based replanning For human-aware multi-robot task allocation with local perception[J]. IEEE Robotics and Automation Letters, 2019, 4(4):3790-3797.
[40] Yang J Y, You X H, Wu G X, et al. Application of reinforcement learning in UAV cluster task scheduling[J]. Future Generation Computer Systems, 2019(95):140-148.
[41] Fu X W, Feng P, Gao X G. Swarm UAVs task and resource dynamic assignment algorithm based on task sequence mechanism[J]. IEEE Access, 2019(7):41090-41100.
[42] Philip O, Zachary B, Souma C. Distributed operation of collaborating unmanned aerial vehicles for time-sensitive oil spill mapping[J]. Swarm and Evolutionary Computation, 2019(46):52-68.
[43] Zhang Y J, Du Y C, Ling H F, Sheng W G, et al. Evolutionary collaborative human-UAV search for escaped criminals[J]. IEEE Transactions on Evolutionary Computation, 2019(6):1.
[44] Zhao T F, Yu X X, Liu P, et al. Ultraviolet anti-collision and localization algorithm in UAV formation network[J]. Optik, 2019, 192:162919.
[45] Liu D X, Xu Y H, Wang J L, et al. Self-organizing relay selection in UAV communication networks:a matching game perspective[J]. IEEE Wireless Communications, 2019, 26(6):102-110.
[46] Primatesta S, Guglieri G, Rizzo A. Risk-aware path planning strategy for UAVs in urban environments[J]. Journal of Intelligent & Robotic Systems, 2019, 95(2):629-643.
[47] Babel L. Coordinated target assignment and UAV path planning with timing constraints[J]. Journal of Intelligent & Robotic Systems, 2019, 94(3-4):857-869.
[48] Belkadi A, Abaunza H, Ciarletta L, et al. Design and implementation of distributed path planning algorithm for a fleet of UAVs[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6):2647-2657.
[49] Xu Y, Luo D L, You Y C, et al. Distributed adaptive affine formation control for heterogeneous linear networked systems[J]. IEEE Access, 2019(7):23354-23364.
[50] 段海滨, 张岱峰, 范彦铭, 等. 从狼群智能到无人机集群协同决策[J].中国科学(信息科学), 2019, 49(2):1-8.
[51] Duan H B, Yang Q, Deng Y M, et al. Unmanned aerial systems coordinate target allocation based on wolf behaviors[J]. Science China Information Sciences, 2019, 62(1):1-3.
[52] Cherpillod A, Floreano D, Mintchev S. Embodied flight with a drone[C]//Third IEEE International Conference on Robotic Computing 2019. Naples, Italy. IEEE, 2019:386-390.
[53] Rognon C, Koehler M, Duriez C, et al. Soft haptic device to render the sensation of flying like a drone[J]. IEEE Robotics and Automation Letters, 2019, 4(3):2524-2531.
[54] Rognon C, Koehler M, Floreano D. Perception of a wearable haptic feedback device to render the sensation of flight[C]//IEEE World Haptics Conference 2019, Tokyo, Japan:IEEE, 2019:1-6.
[55] Zhang J, Yu Z T, Wang X Y, et al. Rfhui An Rfid based human-unmanned aerial vehicle interaction system in an indoor environment[J]. Digital Communications and Networks, 2019, In press.
[56] Singh G, Roy R N, Chanel C P C. Towards multi-UAV and human interaction driving system exploiting human mental state estimation[EB/OL]. (2019-03-20)[2019-12-12]. https://hal.archives-ouvertes.fr/hal-02042960/document.
[57] Treurniet T, Bai L, Campo S À, et al. Drones with eyes:expressive Human-Drone Interaction[EB/OL]. (2019-05-14)[2019-12-12]. https://hal.archives-ouvertes.fr/hal-02-128380/document.
[58] Yao N S, Tao Q Y, Liu W Y, et al. Autonomous flying blimp interaction with human in an indoor space[J]. Front Inform Technol Electron Eng, 2019, 20(1):45-59.
[59] Ilbeygi M, Kangavari M R. A new single-display intelligent adaptive interface for controlling a group of UAVs[J]. Journal of AI and Data Mining, 2019, 7(2):341-353.
[60] Van Diggelen J, Barnhoorn J S, Peeters M M M, et al. Pluggable social artificial intelligence for enabling human-agent teaming[J]. arXiv preprint arXiv, 2019, 1909.04492, 2019.
[61] 赵煦. 走向智能自主的无人机控制技术[J]. 科技导报, 2017, 35(7):1.
文章导航

/