[1] 段海滨, 邱华鑫. 基于群体智能的无人机集群自主控制[M]. 北京:科学出版社, 2018.
[2] 段海滨, 李沛. 基于生物群集行为的无人机集群控制[J]. 科技导报, 2017, 35(7):17-25.
[3] 段海滨, 申燕凯, 王寅, 等. 2018无人机领域热点评述[J]. 科技导报, 2019, 37(3):82-90.
[4] Trump D. Executive Order on Maintaining American Leadership in Artificial Intelligence[J]. Executive Order, 2019(5):11.
[5] US air force science and technology strategy[EB/OL]. (2019-04-17)[2019-12-12]. https://www.af.mil/Portals/1/documents/2019%20SAF%20story%20attachments/Air%20Force%20Science%20and%20Technology%20Strategy.pdf.
[6] 《数据和人工智能经济发展计划》[EB/OL]. (2019-02-15)[2019-12-12]. https://www.chinainfo.org.cn/article/detail?id=230194.
[7] 《新一代人工智能发展规划》[EB/OL]. (2017-07-20)[2019-12-12].http://www.gov.cn/xinwen/2017-07/20/content_5212064.htm.
[8] 全球人工智能战略与政策观察(2019)[EB/OL]. (2019-9)[2019-12-12]. http://aiiaorg.cn/uploadfile/2019/0829/20190829102318489.pdf.
[9] 深圳市新一代人工智能发展行动计划[EB/OL]. (2017-07-20)[2019-12-12]. http://www.sz.gov.cn/zfgb/zcjd/2019-09/t20190918_18215925.htm.
[10] "十三五"国家战略性新兴产业发展规划[EB/OL]. (2016-11-09)[2019-12-12]. http://www.moe.gov.cn/jyb_sy/sy_gwywj/201612/t20161220_292496.html.
[11] 四川省通用航空产业发展规划(2019-2025年)[EB/OL]. (2019-07-19)[2019-12-12]. http://fgw.sc.gov.cn/sfgw/gjscydt/2019-07/19/content_6d4f831931bc465db5f0-1ec89c0f5a1a.shtml.
[12] 工业级无人机投资白皮书(2019)[EB/OL]. (2019-11-18)[2019-12-12]. http://www.dooland.com/magazine/128688.
[13] 深圳市民用微轻型无人机管理暂行办法[EB/OL]. (2019-01-03)[2019-12-12]. http://www.sz.gov.cn/cn/xxgk/zfxxgj/zwdt/201901/t20190103_15219394.htm.
[14] 浙江省无人驾驶航空器公共安全管理规定[EB/OL]. (2019-04-04)[2019-12-12]. http://www.zj.gov.cn/art/2019/4/4/art_1554467_32409199.html.
[15] 特定类无人机试运行管理规程(暂行)[EB/OL]. (2019-06-25)[2019-12-12]. http://www.caac.gov.cn/XXGK/XXGK/JYTNDF/201910/t20191028_199137.html.
[16] 民用机场无人驾驶航空器系统监测系统通用技术要求[EB/OL]. (2019-08-05)[2019-12-12]. http://www.chinaairports.org.cn/.
[17] 轻小型民用无人机飞行动态数据管理规定[EB/OL]. (2019-11-05)[2019-12-12]. http://www.caac.gov.cn/XXGK/XXGK/TZTG/201911/P020191120352957148255.pdf.
[18] Hang K Y, Lyu X M, et al. Perching and resting-A paradigm for UAV maneuvering with modularized landing gears[J]. Science Robotics. 2019, 4(28):15-23.
[19] Xiong H, Hu J, Diao X M. Optimize energy efficiency of quadrotors via arm rotation[J]. Journal of Dynamic Systems Measurement and Control, 2019, 141(9):12-21.
[20] US air force's unmanned XQ-58A valkyrie performs first flight[EB/OL]. (2019-3-8)[2019-12-12]. https://www.janes.com/article/87107/us-air-force-s-unmannedxq-58a-valkyrie-performs-first-flight.
[21] US air force XQ-58A valkyrie completes second flight[EB/OL]. (2019-6-17)[2019-12-12]. https://www.janes.com/article/89318/us-air-force-xq-58a-valkyrie-completes-second-flight.
[22] Stingray unmanned tanker flies for first time[EB/OL]. (2019-9-19)[2019-12-12]. https://www.janes.com/article/91420/stingray-unmanned-tanker-flies-for-firsttime.
[23] 牛轶峰, 沈林成, 李杰, 等. 无人-有人机协同控制关键问题[J]. 中国科学(信息科学), 2019, 49(5):538-554.
[24] 申燕凯, 段海滨, 邓亦敏, 等. 仿鸽群被动式惯性应急避障的无人机集群飞行验证[J]. 中国科学(信息科学), 2019, 49(10):1343-1352.
[25] 党爱国, 王坤, 王延密, 等. 无人机集群作战概念发展对未来战场攻防影响[J]. 战术导弹技术, 2019, 5(1):37-41.
[26] 段海滨, 邱华鑫, 陈琳, 等. 无人机自主集群技术研究展望[J]. 科技导报, 2018, 36(21):90-98.
[27] UK announces plans to develop swarm squadrons of drones[EB/OL]. (2019-2-12)[2019-12-12]. https://www.airforce-technology.com/news/uk-swarm-squadronsdrones/.
[28] Europeans propose siccing self-learning drone swarms on air defenses[EB/OL]. (2019-10-22)[2019-12-12]. https://www.defensenews.com/global/europe/2019/10/22/europeans-propose-siccing-self-learning-drone-swarms-on-air-defenses/.
[29] Sun Y B, Deng Y M, Duan H B. Bionic visual closerange navigation control system for the docking stage of probe-and-drogue autonomous aerial refueling[J]. Aerospace Science and Technology, 2019(9):136-149.
[30] Shen M C, How J P. Active Perception in adversarial scenarios using maximum entropy deep reinforcement learning[J]. arXiv, 2019(1902):05644.
[31] Fathian K, Khosoussi K, Tian Y L, et al. CLEAR:A consistent lifting, embedding, and alignment rectification algorithm for multi-view data association[J]. arXiv, 2019(1902):02256.
[32] Quigley M, Mohta K, Shivakumar S S, et al. The open vision computer:An integrated sensing and compute system for mobile robots[C]//International Conference on Robotics and Automation 2019, Montreal, Canada:IEEE, 2019:1834-1840.
[33] The influence of limited visual sensing on the reynolds flocking algorithm[C]//Third IEEE International Conference on Robotic Computing 2019, Naples, Italy:IEEE, 2019:138-145.
[34] Xu Y, Duan H B. On-board visual navigation system for unmanned aerial vehicles autonomous aerial refueling[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(4):1193-1203.
[35] Duan H B, Xin L, Chen S J. Robust cooperative target detection for a vision based UAVs autonomous aerial refueling platform via the contrast sensitivity mechanism of eagle's eye[J]. IEEE Aerospace and Electronic Systems Magazine, 2019, 33(3):18-30.
[36] Wang X H, Duan H B. Hierarchical visual attention model for saliency detection inspired by avian visual pathways[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(2):540-552.
[37] Amato C, Konidaris G, Kaelbling L P, et al. Modeling and planning with macro-actions in decentralized POMDPs[J]. Journal of Artificial Intelligence Research, 2019(64):817-859.
[38] R-MADDPG for partially observable environments and limited communication[EB/OL]. (2019-5-5)[2019-12-12]. https://openreview.net/pdf?id=Ske_NJK2s4.
[39] Talebpour Z, Martinoli A. Adaptive risk-based replanning For human-aware multi-robot task allocation with local perception[J]. IEEE Robotics and Automation Letters, 2019, 4(4):3790-3797.
[40] Yang J Y, You X H, Wu G X, et al. Application of reinforcement learning in UAV cluster task scheduling[J]. Future Generation Computer Systems, 2019(95):140-148.
[41] Fu X W, Feng P, Gao X G. Swarm UAVs task and resource dynamic assignment algorithm based on task sequence mechanism[J]. IEEE Access, 2019(7):41090-41100.
[42] Philip O, Zachary B, Souma C. Distributed operation of collaborating unmanned aerial vehicles for time-sensitive oil spill mapping[J]. Swarm and Evolutionary Computation, 2019(46):52-68.
[43] Zhang Y J, Du Y C, Ling H F, Sheng W G, et al. Evolutionary collaborative human-UAV search for escaped criminals[J]. IEEE Transactions on Evolutionary Computation, 2019(6):1.
[44] Zhao T F, Yu X X, Liu P, et al. Ultraviolet anti-collision and localization algorithm in UAV formation network[J]. Optik, 2019, 192:162919.
[45] Liu D X, Xu Y H, Wang J L, et al. Self-organizing relay selection in UAV communication networks:a matching game perspective[J]. IEEE Wireless Communications, 2019, 26(6):102-110.
[46] Primatesta S, Guglieri G, Rizzo A. Risk-aware path planning strategy for UAVs in urban environments[J]. Journal of Intelligent & Robotic Systems, 2019, 95(2):629-643.
[47] Babel L. Coordinated target assignment and UAV path planning with timing constraints[J]. Journal of Intelligent & Robotic Systems, 2019, 94(3-4):857-869.
[48] Belkadi A, Abaunza H, Ciarletta L, et al. Design and implementation of distributed path planning algorithm for a fleet of UAVs[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6):2647-2657.
[49] Xu Y, Luo D L, You Y C, et al. Distributed adaptive affine formation control for heterogeneous linear networked systems[J]. IEEE Access, 2019(7):23354-23364.
[50] 段海滨, 张岱峰, 范彦铭, 等. 从狼群智能到无人机集群协同决策[J].中国科学(信息科学), 2019, 49(2):1-8.
[51] Duan H B, Yang Q, Deng Y M, et al. Unmanned aerial systems coordinate target allocation based on wolf behaviors[J]. Science China Information Sciences, 2019, 62(1):1-3.
[52] Cherpillod A, Floreano D, Mintchev S. Embodied flight with a drone[C]//Third IEEE International Conference on Robotic Computing 2019. Naples, Italy. IEEE, 2019:386-390.
[53] Rognon C, Koehler M, Duriez C, et al. Soft haptic device to render the sensation of flying like a drone[J]. IEEE Robotics and Automation Letters, 2019, 4(3):2524-2531.
[54] Rognon C, Koehler M, Floreano D. Perception of a wearable haptic feedback device to render the sensation of flight[C]//IEEE World Haptics Conference 2019, Tokyo, Japan:IEEE, 2019:1-6.
[55] Zhang J, Yu Z T, Wang X Y, et al. Rfhui An Rfid based human-unmanned aerial vehicle interaction system in an indoor environment[J]. Digital Communications and Networks, 2019, In press.
[56] Singh G, Roy R N, Chanel C P C. Towards multi-UAV and human interaction driving system exploiting human mental state estimation[EB/OL]. (2019-03-20)[2019-12-12]. https://hal.archives-ouvertes.fr/hal-02042960/document.
[57] Treurniet T, Bai L, Campo S À, et al. Drones with eyes:expressive Human-Drone Interaction[EB/OL]. (2019-05-14)[2019-12-12]. https://hal.archives-ouvertes.fr/hal-02-128380/document.
[58] Yao N S, Tao Q Y, Liu W Y, et al. Autonomous flying blimp interaction with human in an indoor space[J]. Front Inform Technol Electron Eng, 2019, 20(1):45-59.
[59] Ilbeygi M, Kangavari M R. A new single-display intelligent adaptive interface for controlling a group of UAVs[J]. Journal of AI and Data Mining, 2019, 7(2):341-353.
[60] Van Diggelen J, Barnhoorn J S, Peeters M M M, et al. Pluggable social artificial intelligence for enabling human-agent teaming[J]. arXiv preprint arXiv, 2019, 1909.04492, 2019.
[61] 赵煦. 走向智能自主的无人机控制技术[J]. 科技导报, 2017, 35(7):1.