专题:大数据战略

论大数据代数(BDA):大数据科学与工程的分析方法

  • WANG Yingxu ,
  • 靳瑾
展开
  • 1. 清华大学大数据系统软件国家工程重点实验室, 北京 100084;
    2. 清华大学北京信息科学与技术国家研究中心, 北京 100084;
    3. 国际认知信息学与认知计算学会;卡尔加里大学电气与计算机工程系, Schulich工程学院, Hotchkiss脑科学研究所, 加拿大卡尔加里 T2N 1N4
WANG Yingxu,教授,研究方向为认知信息学、软件科学、大数据代数和指称数学,电子信箱:yingxu@ucalgary.ca

收稿日期: 2019-11-09

  修回日期: 2020-01-19

  网络出版日期: 2020-04-01

基金资助

国家重点研发计划项目(2016YFB0501504);国家自然科学基金项目(U1509213)

On big data algebra: A formal analytic methodology for big data science and engineering

  • WANG Yingxu ,
  • JIN Jin
Expand
  • 1. National Engineering Key Lab for Big Data System Software, School of Software, Tsinghua University, Beijing 100084, China;
    2. Beijing National Research Center of Information Science and Technology, Tsinghua University, Beijing 100084, China;
    3. International Institute of Cognitive Informatics and Cognitive Computing(ICIC), Department of Electrical and Computer Engineering, Schulich School of Engineering and Hotchkiss Brain Institute, University of Calgary, Calgary T2N 1N4, Canada

Received date: 2019-11-09

  Revised date: 2020-01-19

  Online published: 2020-04-01

摘要

大数据科学和系统的基础研究推动了大数据数学理论的产生。本文引出大数据科学和工程的一种严格分析方法:大数据代数(BDA)从提取各种大数据系统的共同模式中形式地导出大数据科学的数学模型。BDA揭示了任何大数据系统是一种超越传统纯数字的新型递归类型化超结构(RTHS)。基于大数据的递归超结构,创建了一组严格的代数算子,用于对大数据系统的建模、分析、综合和认知学习。这一基础研究建立了一个大数据科学的理论架构,其为解释大数据的原理和性质及其在大数据工程中的形式推理提供了一个方法论基础。

本文引用格式

WANG Yingxu , 靳瑾 . 论大数据代数(BDA):大数据科学与工程的分析方法[J]. 科技导报, 2020 , 38(3) : 47 -67 . DOI: 10.3981/j.issn.1000-7857.2020.03.003

Abstract

Basic researches of big data science have triggered the emergence of mathematical theories of big data systems. This paper presents a rigorous analytic methodology for big data science and engineering known as Big Data Algebra (BDA). The mathematical models of big data science in BDA are formally elicited from common patterns and essences of a wide variety of big data systems. BDA reveals that any big data system is a Recursively Typed Hyperstructure (RTHS) beyond the traditional domain of pure numbers. It leads to a set of algebraic operators for big data modeling, analysis, and synthesis towards the denotational mathematical structure of BDA. The formal principles and properties of big data and their mathematical manipulations provide a theoretical framework of big data science as the basis for applications in big data engineering.

参考文献

[1] Chicurel M. Databasing the brain[J]. Nature, 2000, 406(6798):822-825.
[2] Codd E F. A relational model of data for large shared data banks[J]. Communications of the ACM, 1970, 13(1):377-387.
[3] Debenham J K. Knowledge systems design[M]. New York:Prentice Hall, 1989.
[4] Hassanien A E, Azar A T, Snasel V, et al. Big data in complex systems:Challenges and opportunities[M]. Berlin:Springer, 2015.
[5] Jacobs A. The pathologies of big data[J]. Queue, 2009, 7(6):10.
[6] Mashey J R. Big data and the next wave of infrastress[J]. SGI, 1998:1-46.
[7] McCarthy J, Minsky M L, Rochester N, et al. Proposal for the 1956 dartmouth summer research project on artificial intelligence[R/OL].[2019-10-31]. http://www.formal.stanford.edu/jmc/history/dartmouth/dartmouth.html.
[8] McCulloch W S. Embodiments of mind[M]. Cambridge:MIT Press, 1965.
[9] McKinsey B, Gartner D. Big Data means high value, not just volume[J]. Computer Weekly, 2011, 6:1-2.
[10] Snijders C, Matzat U, Reips U D. ‘Big data’:Big gaps of knowledge in the field of internet[J]. International Journal of Internet Science, 2012, 7:1-5.
[11] Shannon C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27:379-423, 623-656.
[12] Tucker A B. The computer science and engineering handbook[J]. New York:CRC Press, 1992.
[13] Turing A M. Computing machinery and intelligence[J]. Mind, 1950, 59:433-460.
[14] Ullman J D, Widom J. A first course in database systems[M]. New York:Prentice Hall, Inc., 1997.
[15] von Neumann J. The computer and the brain[M]. New Haven:Yale University Press, 1958.
[16] Wang Y. On cognitive informatics[J]. Brain and Mind, 2003, 4(3):151-167.
[17] Wang Y. In search of denotational mathematics:Novel mathematical means for contemporary intelligence, brain, and knowledge sciences[J]. Journal of Advanced Mathematics and Applications, 2012, 1(1):4-25.
[18] Wang Y. Software science:On general mathematical models and formal properties of software[J], Journal of Advanced Mathematics and Applications, 2014, 3(2):130-147.
[19] Wang Y. Keynote:Big data algebra:A rigorous approach to big data analytics and engineering[C]//17th International Conference on Mathematical and Computational Methods in Science and Engineering (MACMESE'15), Kuala Lumpur, 2015:2.
[20] Wang Y, Tunstel E. Emergence of abstract sciences and transdisciplinary advances in systems, man, and cybernetics[J]. IEEE System, Man and Cybernetics Magazine, 2019, 5(2):12-19.
[21] Wang Y, Wiebe V J. Big data analytics on the characteristic equilibrium of collective opinions in social networks[J]. International Journal of Cognitive Informatics and Natural Intelligence, 2014, 8(3):27-42.
[22] Wang Y. Formal cognitive models of data, information, knowledge, and intelligence[J]. WSEAS Transactions on Computers, 2015, 14:770-781.
[23] Zadeh L A. Fuzzy sets[J]. Information & Control, 1965, 8(3):338-353.
[24] Zadeh L A. Fuzzy logic and approximate reasoning[J]. Synthese, 1975, 30(3-4):407-428.
[25] Wang Y. On cognitive foundations of big data science and engineering[C]//Proceedings of 15th IEEE International Conference on Cognitive Informatics and Cognitive Computing (ICCI*CC'16). Stanford:IEEE CS Press, 2016:252-259.
[26] Wang Y. On the informatics laws and deductive semantics of software[J]. IEEE Transactions on Systems, Man, and Cybernetics (Part C), 2006, 36(2):161-171.
[27] Hartmanis J. On computational complexity and the nature of computer science, 1994 turing award lecture[J]. Communications of the ACM, 1994, 37(10):37-43.
[28] Wang Y. On Abstract Intelligence:Toward a unified theory of natural, artificial, machinable, and computational intelligence[J]. International Journal of Software Science and Computational Intelligence, 2009, 1(1):1-17.
[29] Wang Y.The theory of fuzzy arithmetic in the extended domain of fuzzy numbers[J]. Journal of Advanced Mathematics and Applications, 2014, 3(2):165-175.
[30] Wang Y. On mathematical theories and cognitive foundations of information[J]. International Journal of Cognitive Informatics and Natural Intelligence, 2015, 9(3):41-63.
[31] Wang Y. Towards the abstract system theory of system science for cognitive and intelligent systems[J]. Journal of Complex and Intelligent Systems, 2015, 1(1):1-22.
[32] Wang Y. On probability algebra:classic probability theory revisited[J]. WSEAS Transaction on Mathematics, 2016, 15:550-565.
[33] Cardelli L, Wegner P. On understanding types, data abstraction, and polymorphism[J]. ACM Computing Surveys, 1985, 17(4):471-522.
[34] Chapra S C, Canale R P. Numerical methods for engineers with software and programming applications[M]. Boston:McGraw-Hill, 2002.
[35] Gowers T. The princeton companion to mathematics[M]. Princeton:Princeton University Press, 2008.
[36] Guttag J V.Abstract data types and the development of data structures[J]. Communications of the ACM, 1977, 20(6):396-404.
[37] Lewis H R, Papadimitriou C H, Elements of the theory of computation[M]. New York:Prentice Hall, 1998.
[38] Mitchell J C. Type systems for programming languages[M]//van Leeuwen J. Handbook of Theoretical Computer Science. North Holland, 1990:365-458.
[39] Wang Y. Software engineering foundations:A software science perspective[M]. New York:Auerbach Publications, 2007.
[40] Wang Y. On the big-R notation for describing iterative and recursive behaviors[J]. International Journal of Cognitive Informatics and Natural Intelligence, 2008, 2(1):17-23.
[41] Wang Y. Concept algebra:A denotational mathematics for formal knowledge representation and cognitive robot learning[J]. Journal of Advanced Mathematics and Applications, 2015, 4(1):62-87.
[42] Wang Y, Valipour M, Zatarain O A. Quantitative semantic analysis and comprehension by cognitive machine learning[J]. International Journal of Cognitive Informatics and Natural Intelligence, 2016, 10(3):14-28.
[43] Wang Y. Keynote:Deep reasoning and thinking beyond deep learning by cognitive robots and brain-inspired systems[C]//Proceedings of 15th IEEE International Conference on Cognitive Informatics and Cognitive Computing (ICCI*CC 2016). Stanford:IEEE CS Press, 2016:22-23.
[44] Wang Y, Widrow B, Zadeh L A, N. et al. Cognitive intelligence:Deep learning, thinking, and reasoning with brain-inspired systems[J]. International Journal of Cognitive Informatics and Natural Intelligence, 2016, 10(4):1-21.
[45] Sternberg R J. In search of the human mind[M]. 2nd ed. New York:Harcourt Brace & Co, 1998.
[46] Wang Y. Cognitive robots:A reference model towards intelligent authentication[J]. IEEE Robotics and Automation, 2010, 17(4):54-62.
[47] Wang Y. Keynote:From information revolution to intelligence revolution:big data science vs. intelligence science[C]//Proceedings of 13th IEEE International Conference on Cognitive Informatics and Cognitive Computing (ICCI*CC 2014). London:IEEE CS Press, 2014:3-5.
[48] Bender E A. Mathematical methods in artificial intelligence[M]. Los Alamitos:IEEE Computer Society Press, 1997.
[49] Wang Y. On cognitive foundations and mathematical theories of knowledge science[J]. International Journal of Cognitive Informatics and Natural Intelligence, 2016, 10(2):1-24.
文章导航

/