科技评论

2019年液滴行为控制研究热点回眸

  • 李会增 ,
  • 宋延林
展开
  • 1. 中国科学院化学研究所绿色印刷重点实验室, 北京 100190;
    2. 中国科学院大学, 北京 100149
李会增,博士后,研究方向为功能界面及液滴行为控制,电子信箱:lhz1990@iccas.ac.cn

收稿日期: 2020-01-02

  修回日期: 2020-01-10

  网络出版日期: 2020-04-01

基金资助

国家自然科学基金项目(51903240,51473173);国家重点研发计划项目(2018YFA0208501)

Achievements of droplet manipulation in 2019: A review

  • LI Huizeng ,
  • SONG Yanlin
Expand
  • 1. Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100149, China

Received date: 2020-01-02

  Revised date: 2020-01-10

  Online published: 2020-04-01

摘要

液滴行为控制是多学科融合的研究领域,对生命科学、材料科学、分析化学和工程热管理等学科的发展都具有重要意义。2019年,液滴行为控制研究在固液碰撞、精准操纵等方面取得了重要进展。回顾了2019年液滴行为控制领域的研究热点和代表性成果,包括固液碰撞行为精准调控、液滴可编程化输运和新型数字微流控技术的发展等。

本文引用格式

李会增 , 宋延林 . 2019年液滴行为控制研究热点回眸[J]. 科技导报, 2020 , 38(3) : 184 -191 . DOI: 10.3981/j.issn.1000-7857.2020.03.016

Abstract

Droplet manipulation is of great significance for multidisciplinary researches including life science, materials science, analytical chemistry and engineering thermal management. In 2019, the research on droplet manipulation achieved significant progress in solid-liquid collision, precise manipulation, etc. This paper reviews the research hotspots and representative achievements in the field of droplet behavior control in 2019, including precise regulation of solid-liquid collision, programmable droplet transport and development of a new digital micro-flow control technology.

参考文献

[1] Li H Z, Fang W, Li Y N, et al. Spontaneous droplets gyrating via asymmetric self-splitting on heterogeneous surfaces[J]. Nature Communications, 2019, 10(1):950.
[2] Zhao Z P, Li H Z, Hu X T, et al. Steerable droplet bouncing for precise materials transportation[J]. Advanced Materials Interfaces, 2019, 6(21):1901033.
[3] Bird J C, Dhiman R, Kwon H M, et al. Reducing the contact time of a bouncing drop[J]. Nature, 2013, 503(7476):385-388.
[4] Liu Y H, Moevius L, Xu X P, et al. Pancake bouncing on superhydrophobic surfaces[J]. Nature Physics, 2014, 10(7):515-519.
[5] Girard H L, Soto D, Varanasi K K. Waterbowls:Reducing impacting droplet interactions by momentum redirection[J]. ACS Nano, 2019, 13(7):7729-7735.
[6] Sun Q Q, Wang D H, Li Y N, et al. Surface charge printing for programmed droplet transport[J]. Nature Materials, 2019, 18(9):936-941.
[7] Bradley A, Box F, Hewitt I, et al. Wettability-independent droplet transport by Bendotaxis[J]. Physical Review Letters, 2019, 122(7):074503.
[8] Bintein P B, Bense H, Clanet C, et al. Self-propelling droplets on fibres subject to a crosswind[J]. Nature Physics, 2019, 15(10):1027-1032.
[9] Linke H, Alemán B J, Melling L D, et al. Self-propelled Leidenfrost droplets[J]. Physical Review Letters, 2006, 96(15):154502.
[10] Li J, Zhou X F, Zhang Y J, et al. Rectification of mobile Leidenfrost droplets by planar ratchets[J]. Small, 2019. doi:10.1002/smll.201901751.
[11] Gauthier A, Diddens C, Proville R, et al. Self-propulsion of inverse Leidenfrost drops on a cryogenic bath[J]. Proceedings of the National Academy of Sciences, 2019, 116(4):1174-1179.
[12] Jiang J K, Gao J, Zhang H D, et al. Directional pumping of water and oil microdroplets on slippery surface[J]. Proceedings of the National Academy of Sciences, 2019, 116(7):2482-2487.
[13] Zhang X X, Sun L Y, Wang Y, et al. Multibioinspired slippery surfaces with wettable bump arrays for droplets pumping[J]. Proceedings of the National Academy of Sciences, 2019, 116(42):20863-20868.
[14] Li J, Ha N S, Liu T Y, et al. Ionic-surfactant-mediated electro-dewetting for digital microfluidics[J]. Nature, 2019, 572(7770):507-510.
文章导航

/