[1] Reed R C. The superalloys fundamentals and applications[M]. Cambridge:Cambridge University Press, 2006. 170-187.
[2] Reed R C, Matan N, Cox D C, et al. Creep of CMSX-4 superalloy single crystals:Effects of rafting at high temperature[J]. Acta Materialia, 1999, 47(7):3367-3381.
[3] Matan N, Cox D C, Rae C M F, et al. On the kinetics of rafting in CMSX-4 superalloy single crystals[J]. Acta Materialia, 1999, 47(7):2031-2045.
[4] Matan N, Cox D C, Carter P, et al. Creep of CMSX-4 superalloy single crystals:Effects of misorientation and temperature[J]. Acta Materialia, 1999, 47(7):1549-1563.
[5] Chen Q Z, Knowles D M. Mechanism of <112>/3 slip initiation and anisotropy of γ' phase in CMSX-4 during creep at 750oC and 750 MPa[J]. Materials Science and Engineering A, 2003, 356(2):352-367.
[6] Rae C M F, Reed R C. Primary creep in single crystal superalloys:Origins, mechanisms and effects[J]. Acta Materialia, 2007, 55(3):1067-1081.
[7] Rae C M F, Matan N, Cox D C, et al. On the primary creep of CMSX-4 superalloy single crystals[J]. Metallurgical and Materials Transactions A, 2000, 31(9):2219-2228.
[8] Zhang J X, Wang J C, Harada H, et al. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep[J]. Acta Materialia, 2005, 53(17):4623-4633.
[9] Buffiere J Y, Ignat M. A dislocation based criterion for the raft formation in nickel-based superalloys single crystals[J]. Acta Metallurgica Materialia, 1995, 43(5):1791-1797.
[10] Field R D, Pollock T M, Murphy W H. The development of γ/γ' interfacial dislocation networks during creep in Ni-base superalloys[C]//Superalloys 1992, Warrendale, PA:The Minerals, Materials and Metals Society, 1992, 557-566.
[11] Tien J K, Copley S M. The effect of uniaxial stress on the periodic morphology of coherent gamma prime precipitates in nickel-base superalloy crystals[J]. Metallurgical Transactions A, 1971, doi:10.1007/BF02662660.
[12] Tien J K, Gamble R P. Effects of stress coarsening on coherent particle strengthening[J]. Metallurgical Transactions A, 1972, doi:10.1007/bf02643227.
[13] MacKay R A, Ebert L J. The development of directional coarsening of the γ' precipitate in superalloy single crystals[J]. Scripta Metallurgica, 1983, doi:10.1016/0036-9748(83)90287-9.
[14] Qi D Q, Wang D, Du K, et al. Creep deformation of a nickel-based single crystal superalloy under high stress at 1033 K[J]. Journal of Alloys and Compounds, 2018, 735(6):813-820.
[15] Fredholm A, Strudel J L. On the creep resistance of some nickel base single crystals[C]//Superalloys 1984 Warrendale, PA:The Minerals, Materials and Metals Society, 1984, 211-220.
[16] Paris O, Fahrmann M, Fahrmann E, et al. Early stages of precipitate rafting in a single crystal Ni-Al-Mo model alloy investigated by small-angle X-ray scattering and TEM[J]. Acta Materialia, 1997, 45(3):1085-1093.
[17] Rae C M F, Reed R C. Primary creep in single crystal superalloys:Origins, mechanisms and effects[J]. Acta Materialia, 2007, 55(3):1067-1081.
[18] Pollock T M, Argon A S. Creep resistance of CMSX-3 nickel base superalloy single crystals[J]. Acta Metallurgica Materialia, 1992, 40(1):1-30.
[19] Sass V, Glatzel U, Feller-Kniepmeier M. Anisotropic creep properties of the nickel-base superalloy CMSX-4[J]. Acta Materialia. 1996, 44(5):1967-1977.
[20] Feller-Kniepmeier M, Link T, Poschmann I. Temperature dependence of deformation mechanisms in a single crystal nickel-base alloy with high volume fraction of γ' phase[J]. Acta Materialia, 1996, 44(6):2397-2407.
[21] Sass V, Feller-Kniepmeier M. Orientation dependence of dislocation structures and deformation mechanisms in creep deformed CMSX-4 single crystals[J]. Materials Science and Engineering A, 1998, 245(1):19-28.
[22] Matan N, Cox D C, Carter P, et al. Creep of CMSX-4 superalloy single crystals:Effects of misorientation and temperature[J]. Acta Materialia, 1999, 47(5):1549-1563.
[23] Rae C M F, Matan N, Cox D C, et al. On the primary creep of CMSX-4 superalloy single crystals[J]. Metallurgical and Materials Transactions A, 2000, 31(9):2219-2228.
[24] Link T, Feller-Kniepmeier M. Shear mechanisms of the γ' phase in single-crystal superalloys and their relation to creep[J]. Metallurgical Transactions A, 1992, 23(1):99-105.
[25] Rae C M F, Matan N, Reed R C. The role of stacking fault shear in the primary creep of
[001] -oriented single crystal superalloys at 750℃ and 750 MPa[J]. Materials Science and Engineering A, 2001, 300(1):125-134.
[26] Ma A, Dye D, Reed R C. A model for the creep deformation behaviour of single-crystal superalloy CMSX-4[J]. Acta Materialia. 2008, 56(2):1657-1670.
[27] Kakehi K. Effect of primary and secondary precipitates on creep strength of Ni-base superalloy single crystals[J]. Materials Science and Engineering A, 2000, 278(1/2):135-141.
[28] Qi D Q, Wang L, Zhao P, et al. Facilitating effect of interfacial grooves on the rafting of nickel-based single crystal superalloy at high temperature[J]. Scripta Materialia, 2019, doi:10.1016/j.scriptamat.2019.04.001
[29] Viswanathan G B, Sarosi P M, Henry M F, et al. Investigation of creep deformation mechanisms at intermediate temperatures in René 88 DT[J]. Acta Materialia, 2005, 53(10):3041-3057.
[30] Knowles D M, Gunturi S. The role of <112> {111} slip in the asymmetric nature of creep of single crystal superalloy CMSX-4[J]. Materials Science and Engineering A, 2002, 328(1/2):223-237.