专题:高温合金新材料及先进制备技术

镍基单晶高温合金蠕变机制研究进展

  • 张思倩 ,
  • 王栋
展开
  • 1. 沈阳工业大学材料科学与工程学院, 沈阳 110870;
    2. 中国科学院金属研究所, 沈阳 110016
张思倩,副教授,研究方向为单晶高温合金蠕变和疲劳变形行为,电子信箱:sqzhang@alum.imr.ac.cn

收稿日期: 2019-12-19

  修回日期: 2020-01-02

  网络出版日期: 2020-04-01

基金资助

国家自然科学基金项目(51631008);国家科技重大专项(2017-VI-0003-0073)

Creep deformation mechanism of nickel-based single crystal superalloy

  • ZHANG Siqian ,
  • WANG Dong
Expand
  • 1. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;
    2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

Received date: 2019-12-19

  Revised date: 2020-01-02

  Online published: 2020-04-01

摘要

叶片在服役过程中主要承受〈001〉轴向的离心载荷,由离心应力导致的蠕变损伤是叶片的主要失效机制之一。基于单晶叶片的典型服役条件,总结了国内外关于高温低应力和中温高应力蠕变变形损伤机制的研究现状,指出深入开展含典型缺陷单晶高温合金蠕变行为、氧化和热腐蚀对单晶合金蠕变-疲劳变形损伤机制影响研究十分必要。

本文引用格式

张思倩 , 王栋 . 镍基单晶高温合金蠕变机制研究进展[J]. 科技导报, 2020 , 38(2) : 6 -10 . DOI: 10.3981/j.issn.1000-7857.2020.02.001

Abstract

The creep damage caused by the centrifugal stress is one of the main failure mechanisms of the blade, so it is very important to study the creep deformation behavior of the nickel-based single crystal superalloy. Based on the typical service conditions of the single crystal blade, this paper reviews the creep deformation mechanisms under the conditions of the high temperature-low stress and the medium temperature-high stress. It is suggested to study the creep behavior of the single crystal superalloys with typical defects and the effect of the oxidation and the hot corrosion on the creep-fatigue deformation damage mechanism.

参考文献

[1] Reed R C. The superalloys fundamentals and applications[M]. Cambridge:Cambridge University Press, 2006. 170-187.
[2] Reed R C, Matan N, Cox D C, et al. Creep of CMSX-4 superalloy single crystals:Effects of rafting at high temperature[J]. Acta Materialia, 1999, 47(7):3367-3381.
[3] Matan N, Cox D C, Rae C M F, et al. On the kinetics of rafting in CMSX-4 superalloy single crystals[J]. Acta Materialia, 1999, 47(7):2031-2045.
[4] Matan N, Cox D C, Carter P, et al. Creep of CMSX-4 superalloy single crystals:Effects of misorientation and temperature[J]. Acta Materialia, 1999, 47(7):1549-1563.
[5] Chen Q Z, Knowles D M. Mechanism of <112>/3 slip initiation and anisotropy of γ' phase in CMSX-4 during creep at 750oC and 750 MPa[J]. Materials Science and Engineering A, 2003, 356(2):352-367.
[6] Rae C M F, Reed R C. Primary creep in single crystal superalloys:Origins, mechanisms and effects[J]. Acta Materialia, 2007, 55(3):1067-1081.
[7] Rae C M F, Matan N, Cox D C, et al. On the primary creep of CMSX-4 superalloy single crystals[J]. Metallurgical and Materials Transactions A, 2000, 31(9):2219-2228.
[8] Zhang J X, Wang J C, Harada H, et al. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep[J]. Acta Materialia, 2005, 53(17):4623-4633.
[9] Buffiere J Y, Ignat M. A dislocation based criterion for the raft formation in nickel-based superalloys single crystals[J]. Acta Metallurgica Materialia, 1995, 43(5):1791-1797.
[10] Field R D, Pollock T M, Murphy W H. The development of γ/γ' interfacial dislocation networks during creep in Ni-base superalloys[C]//Superalloys 1992, Warrendale, PA:The Minerals, Materials and Metals Society, 1992, 557-566.
[11] Tien J K, Copley S M. The effect of uniaxial stress on the periodic morphology of coherent gamma prime precipitates in nickel-base superalloy crystals[J]. Metallurgical Transactions A, 1971, doi:10.1007/BF02662660.
[12] Tien J K, Gamble R P. Effects of stress coarsening on coherent particle strengthening[J]. Metallurgical Transactions A, 1972, doi:10.1007/bf02643227.
[13] MacKay R A, Ebert L J. The development of directional coarsening of the γ' precipitate in superalloy single crystals[J]. Scripta Metallurgica, 1983, doi:10.1016/0036-9748(83)90287-9.
[14] Qi D Q, Wang D, Du K, et al. Creep deformation of a nickel-based single crystal superalloy under high stress at 1033 K[J]. Journal of Alloys and Compounds, 2018, 735(6):813-820.
[15] Fredholm A, Strudel J L. On the creep resistance of some nickel base single crystals[C]//Superalloys 1984 Warrendale, PA:The Minerals, Materials and Metals Society, 1984, 211-220.
[16] Paris O, Fahrmann M, Fahrmann E, et al. Early stages of precipitate rafting in a single crystal Ni-Al-Mo model alloy investigated by small-angle X-ray scattering and TEM[J]. Acta Materialia, 1997, 45(3):1085-1093.
[17] Rae C M F, Reed R C. Primary creep in single crystal superalloys:Origins, mechanisms and effects[J]. Acta Materialia, 2007, 55(3):1067-1081.
[18] Pollock T M, Argon A S. Creep resistance of CMSX-3 nickel base superalloy single crystals[J]. Acta Metallurgica Materialia, 1992, 40(1):1-30.
[19] Sass V, Glatzel U, Feller-Kniepmeier M. Anisotropic creep properties of the nickel-base superalloy CMSX-4[J]. Acta Materialia. 1996, 44(5):1967-1977.
[20] Feller-Kniepmeier M, Link T, Poschmann I. Temperature dependence of deformation mechanisms in a single crystal nickel-base alloy with high volume fraction of γ' phase[J]. Acta Materialia, 1996, 44(6):2397-2407.
[21] Sass V, Feller-Kniepmeier M. Orientation dependence of dislocation structures and deformation mechanisms in creep deformed CMSX-4 single crystals[J]. Materials Science and Engineering A, 1998, 245(1):19-28.
[22] Matan N, Cox D C, Carter P, et al. Creep of CMSX-4 superalloy single crystals:Effects of misorientation and temperature[J]. Acta Materialia, 1999, 47(5):1549-1563.
[23] Rae C M F, Matan N, Cox D C, et al. On the primary creep of CMSX-4 superalloy single crystals[J]. Metallurgical and Materials Transactions A, 2000, 31(9):2219-2228.
[24] Link T, Feller-Kniepmeier M. Shear mechanisms of the γ' phase in single-crystal superalloys and their relation to creep[J]. Metallurgical Transactions A, 1992, 23(1):99-105.
[25] Rae C M F, Matan N, Reed R C. The role of stacking fault shear in the primary creep of
[001] -oriented single crystal superalloys at 750℃ and 750 MPa[J]. Materials Science and Engineering A, 2001, 300(1):125-134.
[26] Ma A, Dye D, Reed R C. A model for the creep deformation behaviour of single-crystal superalloy CMSX-4[J]. Acta Materialia. 2008, 56(2):1657-1670.
[27] Kakehi K. Effect of primary and secondary precipitates on creep strength of Ni-base superalloy single crystals[J]. Materials Science and Engineering A, 2000, 278(1/2):135-141.
[28] Qi D Q, Wang L, Zhao P, et al. Facilitating effect of interfacial grooves on the rafting of nickel-based single crystal superalloy at high temperature[J]. Scripta Materialia, 2019, doi:10.1016/j.scriptamat.2019.04.001
[29] Viswanathan G B, Sarosi P M, Henry M F, et al. Investigation of creep deformation mechanisms at intermediate temperatures in René 88 DT[J]. Acta Materialia, 2005, 53(10):3041-3057.
[30] Knowles D M, Gunturi S. The role of <112> {111} slip in the asymmetric nature of creep of single crystal superalloy CMSX-4[J]. Materials Science and Engineering A, 2002, 328(1/2):223-237.
文章导航

/