研究论文

基于图像二值化的柔性机构振动非接触测量方法

  • 马天兵 ,
  • 王芳芳 ,
  • 杜菲
展开
  • 安徽理工大学机械工程学院, 淮南 232001
马天兵,教授,研究方向为振动控制,电子信箱:dfmtb@163.com

收稿日期: 2019-06-02

  修回日期: 2019-11-11

  网络出版日期: 2020-04-01

基金资助

国家自然科学基金项目(51305003);安徽省博士后基金项目(2017B172);安徽理工大学国家自然科学基金预研项目(2016yz004)

Measurement of vibration displacement based on improved twodimensional Otsu method

  • MA Tianbing ,
  • WANG Fangfang ,
  • DU Fei
Expand
  • School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China

Received date: 2019-06-02

  Revised date: 2019-11-11

  Online published: 2020-04-01

摘要

针对目前机器视觉方法对柔性机构振动进行非接触测量时其结果易受环境干扰等问题,提出一种基于图像二值化的最大类间方差算法的非接触视觉测量方法。首先分析传统二维最大类间方差算法的错分与计算复杂等缺陷,采用二维直方图分块法和可变步长迭代法对传统二维最大类间方差算法进行改进,然后以Lena图像和柔性机械臂为例分别进行了仿真分析和振动位移测量实验验证。结果显示,基于改进二维最大类间方差算法的非接触视觉测量方法显著提高了图像分割效果,分割时间仅为传统二维最大类间方差算法的约10%;以仿真分析得到的柔性机械臂末端振动位移为评判标准进行测量准确性比较,基于改进二维最大类间方差算法的测量结果明显优于传统二维最大类间方差法和压电法,证明了基于图像二值化的最大类间方差算法的柔性机构振动非接触视觉测量方法的可行性和可靠性。

本文引用格式

马天兵 , 王芳芳 , 杜菲 . 基于图像二值化的柔性机构振动非接触测量方法[J]. 科技导报, 2020 , 38(2) : 69 -78 . DOI: 10.3981/j.issn.1000-7857.2020.02.008

Abstract

It is known that the non-contact measurements of the flexible mechanism vibration by the machine vision method are susceptible to the environmental interference, therefore, this paper proposes a non-contact measurement method, the maximal between-cluster variance algorithm based on the image binarization. Firstly, due to the drawbacks of the traditional twodimensional maximal between-cluster variance algorithm, such as the misclassification and the complicated computation, the twodimensional histogram partitioning method and the variable step size iteration method are used to improve the traditional twodimensional maximal between-cluster variance algorithm, then the Lena image and the flexible cantilever beam are taken as examples to carry out the simulation analysis and the vibration displacement measurement experiments, respectively. The results show that the non-contact measurement method based on the improved maximal between-cluster variance algorithm significantly improves the image segmentation effect, and the segmentation time is 10% of the traditional maximal between-cluster variance algorithm. With the vibration displacement of the end of the flexible cantilever beam obtained by the simulation as the criterion for the measuring accuracy, the measurement result of the improved two-dimensional maximal between-cluster variance algorithm is found superior to the traditional two-dimensional maximal between-cluster variance method and the piezoelectric method, with feasibility and reliability.

参考文献

[1] 魏燕定, 娄军强, 吕永桂, 等. 振动主动控制中线性二次型最优控制问题研究[J]. 浙江大学学报(工学版), 2009, 43(3):420-424.
[2] 娄军强, 魏燕定, 杨依领, 等. 智能柔性机械臂的建模和振动主动控制研究[J]. 机器人, 2014, 36(5):552-559, 575.
[3] Rodriguez-Fortun J M, Orus J, Alfonso J, et al. Flatnessbased active vibration control for piezoelectric actuators[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(1):221-229.
[4] Li S Q, Li J, Mo Y P. Piezoelectric multimode vibration control for stiffened plate using ADRC-based acceleration compensation[J]. IEEE Transactions on Industrial Electronics, 2014, 61(12):6892-6902.
[5] Ho C C, Wu D S, Chen J C. Flow-jet-assisted electrochemical discharge machining for quartz glass based on machine vision[J]. Measurement, 2018, 128:71-83.
[6] Pézerat C, Guyader J L. Force analysis technique:Reconstruction of force distribution on plates[J]. Acta Acustica United with Acustica, 2000, 86(2):322.
[7] Poittevin J, Picart P, Faure C, et al. Multi-point vibrometer based on high-speed digital in-line holography[J]. Applied Optics, 2015, 54(11):3185-3196.
[8] Baqersad J, Poozesh P, Niezrecki C, et al. Photogrammetry and optical methods in structural dynamics-A review[J]. Mechanical Systems & Signal Processing, 2017, 86:17-34.
[9] Tang W S, Tian L H, Zhao X L. Research on displacement measurement of disk vibration based on machine vision technique[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(8):4173-4177.
[10] Zhong J F, Zhong S C, Zhang Q K, et al. Vision-based measurement system for instantaneous rotational speed monitoring using linearly varying-density fringe pattern[J]. IEEE Transactions on Instrumentation & Measurement, 2018, 67(6):1434-1445.
[11] Hosseininia S J, Khalili K, Emam S M. Flexible automation in porcelain edge polishing using machine vision[J]. Procedia Technology, 2016, 22:562-569.
[12] Li Q, Wang S G, Guan B Q, et al. A machine vision method for the measurement of vibration amplitude[J]. Measurement Science & Technology, 2007, 18(5):1477-1486.
[13] Choi H S, Cheung J H, Kim S H, et al. Structural dynamic displacement vision system using digital image processing[J]. Ndt & E International, 2011, 44(7):597-608.
[14] Durand-Texte T, Simonetto E, Melon M. Vibration measurement using a pseudo-stereo system, target tracking and vision methods[J]. Mechanical Systems and Signal Processing, 2019, 118(4):30-40.
[15] 董传智, 叶肖伟, 刘坦. 非接触式结构动力特性识别方法及试验验证[J]. 振动与冲击, 2017, 36(1):188-193.
[16] 尹爱军, 李江, 张泉. 复小波离面振动检测的研究[J]. 振动与冲击, 2017, 36(8):60-64.
[17] 邱志成, 张祥通. 基于视觉的柔性结构振动测量及其控制[J]. 振动、测试与诊断, 2012, 32(1):11-16, 157-158.
[18] 徐秀秀, 郭毓, 余臻, 等. 基于机器视觉的柔性臂振动测量研究[J]. 华中科技大学学报(自然科学版), 2013, 41(1):129-132.
文章导航

/