综述

电容倍增电路研究进展

  • 李严
展开
  • 北京信息科技大学理学院, 北京 100192
李严,副教授,研究方向为医学应用集成电路设计,电子信箱:ly_5100@126.com

收稿日期: 2019-04-02

  修回日期: 2019-07-18

  网络出版日期: 2020-05-11

基金资助

国家自然科学基金青年科学基金项目(61604014);北京市教委科研计划面上项目(71E1810981);北京信息科技大学教改项目(2020JGYB41)

Recent progress of capacitance multiplier research

  • LI Yan
Expand
  • School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, China

Received date: 2019-04-02

  Revised date: 2019-07-18

  Online published: 2020-05-11

摘要

模拟滤波器在生理信号前端处理集成电路中是至关重要的模块,它直接影响到所获取的信号质量。由于生理信号的频率范围极低,模拟滤波器中大数值电容的片上实现是亟需解决的问题。总结了电容倍增电路的研究进展,对电流模式倍增电路、电压模式倍增电路、基于电流电压转换方式的电容倍增电路、非平衡电容倍增电路等关键技术进行了提炼和分析,并且展望了电容倍增电路未来的研究方向。

本文引用格式

李严 . 电容倍增电路研究进展[J]. 科技导报, 2020 , 38(7) : 112 -117 . DOI: 10.3981/j.issn.1000-7857.2020.07.014

Abstract

On-chip analog filter is a key part for integrated circuits preprocessing physiological signals, which influences the quality of signals acquired. Since the frequency of the physiological signals is of ultra-low range, the on-chip large capacitance in the analog filter is the key problem to be solved immediately. The paper summaries the recent progress of the capacitance multiplier development, such as current mode capacitance multiplier, voltage mode capacitance multiplier, capacitance multiplier based on current-to-voltage converter and unbalanced capacitance multiplier, and then analyzes the key technology. Finally the paper looks into the future of the capacitance multiplying circuits.

参考文献

[1] Li Y, Poon C C Y, Zhang Y T. Analog integrated circuits design for processing physiological signals[J]. IEEE Reviews in Biomedical Engineering, 2010, 3:93-105.
[2] 李严. 可穿戴式医疗芯片研究进展[J]. 科技导报, 2017, 35(2):33-40.
[3] 李严, 张元亭. 一种用于可穿戴式生理参数检测的集成电路[J]. 电子技术应用, 2016, 42(11):18-21.
[4] 李严. 一种适用于生理信号的OTA-C滤波器[J]. 微电子学, 2017, 47(4):510-513.
[5] Silva-Martinez J, Vazquez-Gonzalez A. Impedance scalers for IC active filters[C]//IEEE International Symposium on Circuits and Systems, Monterey, CA, 1998:151-154.
[6] Silva-Martinez J, Solis-Bustos S. Design considerations for high performance very low frequency filters[C]//Proceedings of the 1999 IEEE International Symposium Circuits and Systems, Orlando, FL, 1999:648-651.
[7] Solis-Bustos S, Silva-Martínez J, Maloberti F, et al. A 60 dB dynamic-range CMOS sixth-order 2.4 Hz low-pass filter for medical applications[J]. IEEE Transactions on Circuits and System-II, 2000, 47(12):1391-1398.
[8] Hsu C L, Ho M H, Wu Y K, et al. Design of low-frequency low-pass filters for biomedical applications[C]//IEEE Asia Pacific Conference on Circuits and Systems, Singapore. 2006:690-695.
[9] Germanovix W, Bonizzoni E, Maloberti F. Capacitance super multiplier for sub-hertz low-pass integrated filters[J]. IEEE Transactions on Circuits and Systems-II:Express Briefs, 2018, 65(3):301-305.
[10] Padilla-Cantoya I. Capacitor multiplier with wide dynamic range and large multiplication factor for filter applications[J]. IEEE Transactions on Circuits and Systems-II:Express Briefs, 2013, 60(3):152-156.
[11] Li Y, Wong A K Y, Zhang Y T. A Fully-integrated transimpedance amplifier for photoplethysmographic signal processing with two-stage miller capacitance multiplier[J]. Electronics Letters, 2010, 46(11):745-746.
[12] Padilla-Cantoya I, Furth P M. Enhanced grounded capacitor multiplier and its floating implementation for analog filters[J]. IEEE Transactions on Circuits and Systems-II:Express Briefs, 2015, 62(10):962-966.
[13] Brînzoi P, Cracan A, Cojan N. A new approach in designing electrically controlled capacitance multipliers[C]//International Symposium on Signals, Circuits and Systems, Iaşi, 2011:1-4.
[14] Bonteanu G. A wide range fine tuning capacitance multiplier[C]//IEEE 23rd International Symposium for Design and Technology in Electronic Packaging (SIITME), Constanța, Romania, 2017:122-125.
文章导航

/