采用“实证数据同化SARS案例疫情趋势模型”方法,以各地市卫生健康委员会发布的新型冠状病毒肺炎疫情数据为基础同化模型参数,总结研究团队2020年2月3—28日对全国(除湖北)、湖北省(除武汉)、武汉市的多次疫情趋势分析和决策建议,并提供3条预测曲线作为疫情防控指导线,预测疫情发展。该模型的疫情峰值线可作为评估当前防疫措施是否得当的标准线,用于各地市疫情趋势预警,指导防疫措施的制定,为医疗资源、生活应急物资的调度提供决策支持,为稳定民众情绪发挥作用。
袁宏永
,
梁漫春
,
黄全义
,
苏国锋
,
陈涛
,
陈建国
,
孙占辉
,
杨思航
,
邓李政
,
黎岢
,
秦泽生
,
于淼淼
,
程明
,
李开远
,
刘罡
,
肖鑫鑫
,
李文章
. 实证数据同化案例方法在新冠肺炎疫情分析中的应用[J]. 科技导报, 2020
, 38(6)
: 83
-89
.
DOI: 10.3981/j.issn.1000-7857.2020.06.012
The method of "empirical data assimilation for the SARS epidemic trend model" is used to assimilate the model parameters based on the new crown epidemic data released by the Health Committee of each city, and our research team's recent work is presented, including the multiple epidemic trend analysis and the decision-making suggestions for the whole country (except Hubei), Hubei Province (except Wuhan) and Wuhan city from February 3 to February 28, 2020. Three prediction curves are shown as the guideline of the epidemic prevention and control to predict the development of the epidemic. The epidemic peak line of the model can be used as a standard line to evaluate whether the current epidemic prevention measures are appropriate and be used for the early warning of the epidemic trend in various cities, to guide the proper taking of the epidemic prevention measures, to provide the decision support for the scheduling of medical resources and emergency supplies for life, and to play a role in stabilizing the public mood.
[1] Munster V, Koopmans M, van Doremalen N, et al. A novel coronavirus emerging in China-key questions for impact assessment[J]. New England Journal of Medicine, 2020, 382(8):692-694.
[2] Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia[J]. The New England Journal of Medicine, 2020, doi:10.1056/NEJMoa2001316.
[3] Liu T, Hu J, Kang M, et al. Transmission dynamics of 2019 novel coronavirus (2019-nCoV)[J]. BioRxiv, 2020, doi:10.1101/2020.01.25.919787.
[4] Shen M, Hu J, Kang M, et al. Modelling the epidemic trend of the 2019 novel coronavirus outbreak in China[J]. BioRxiv, 2020, doi:10.1101/2020.01.23.916726.
[5] Hermanowicz W. Forecasting the Wuhan coronavirus (2019-nCoV) epidemics using a simple (simplistic) model[J]. MedRxiv, 2020, doi:10.1101/2020.02.04.20020461.
[6] Ming W, Huang J, Zhang C. Breaking down of healthcare system:Mathematical modelling for controlling the novel coronavirus (2019-nCoV) outbreak in Wuhan, China[J]. BioRxiv, 2020, doi:10.1101/2020.01.27.922443.
[7] Tan W, Zhao X, Ma X, et al. A novel coronavirus genome identified in a cluster of pneumonia cases-Wuhan, China 2019-2020[J]. China CDC Weekly, 2020, 2(4):61-62.
[8] Bauch C, Lloyd-Smith J, Coffee M, et al. Dynamically modeling SARS and other newly emerging respiratory illnesses:past, present, and future[J]. Epidemiology, 2005, 16(6):791-801.
[9] Funk S, Eggo R. Early dynamics of transmission and control of 2019-nCoV:A mathematical modelling study[J]. MedRxiv, 2020, doi:10.1101/2020.01.31.20019901.