量子基本原理预言存在两类基本粒子:费米子和玻色子,但超对称又把它们联系起来并可相互转换。超对称的创新首次把每个粒子的内禀对称性和它们所在时空的对称性结合起来,因此局域的超对称理论必然包含爱因斯坦引力,称之为超引力。超引力预言自旋3/2基本粒子,是该粒子和引力自洽耦合的最简单理论。同时作为超弦的低能有效理论,超引力是超弦研究不可分割的部分。
From the quantum principles, two very different types of fundamental particles are predicted, the fermions and the bosons, which however can be united and become interchangeable under the supersymmetry. The supersymmetry relates first time the internal symmetry of the particles to the symmetries of their spacetime. Consequently, any theory for the local supersymmetry necessarily includes the forces introduced by Einstein's General Relativity and hence we call the forces the supergravity. With the supergravity, the gravitino of spin 3/2 is predicted. In fact it is the simplest theory that can consistently couple a spin-3/2 fermion to the gravity. As the low-energy effective action of strings, the supergravity is an integral part of the string research.
[1] Einstein A. Zur Elektrodynamik bewegter Körper[J]. Annalen der Physik. 2006, 322(10):891-921.
[2] Einstein A. The field equations of gravitation[J]. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math Physics), 1915:844-847.
[3] Oerte R. The theory of almost everything:The standard model, the unsung triumph of modern physics[M]. New York:Pi Press, 2006:327.
[4] Abbott B P, Abbott R, Abbot T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6):061102.
[5] Yang C N, Mills R L. Conservation of isotopic spin and isotopic gauge invariance[J]. Physical Review, 1954, 96(1):191-195.
[6] Ruse M. Entry for ‘reductionism’[M]. 2nd ed. The Oxford Companion to Philosophy. Oxford:Oxford University Press, 1995:793.
[7] Galilei G. Discorsie dimostrazioni matematiche, intorno á due nuoue scienze (in Italian)[M]. Leiden:Elsevier, 1638:191-196.
[8] Lorentz H A. Electromagnetic phenomena in a system moving with any velocity smaller than that of light[C]. Proceedings of the Royal Netherlands Academy of Arts and Sciences, 1937:172-197.
[9] Kaluza T. Zum unitätsproblem der physik[J]. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 1921:966-972.
[10] Klein O. The atomicity of electricity as a quantum theory law[J]. Nature, 1926, 118(2971):516.
[11] Straumann N. On Pauli's invention of non-Abelian Kaluza-Klein theory in 1953[C]//Ninth Marcel Grossmann Meeting:On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, 2002, 3:1063-1066.
[12] Salam A, Sezgin E. Chiral compactification on Minkowski×S2 of N=2 Einstein-Maxwell supergravity in six dimensions[J]. Physics Letters B, 1984, 147(1):47-51.
[13] Gibbons G W, Pope C N. Consistent S2 Pauli reduction of six-dimensional chiral gauged Einstein-Maxwell supergravity[J]. Nuclear Physics B, 2004, 697:225-242.
[14] Wess J, Zumino B. Supergauge transformations in fourdimensions[J]. Nuclear Physics B, 1974, 70:39-50.
[15] Miyazawa H. Baryon number changing currents[J]. Progress of Theoretical Physics, 1966, 36(6):1266-1276.
[16] Gervais J L, Sakita B. Field theory interpretation of supergauges in dual models[J]. Nuclear Physics B, 1971, 34:632-639.
[17] Wess J, Zumino B. A Lagrangian model invariant under supergauge transformations[J]. Physics Letters B, 1974, 49:52-54.
[18] Fayet P. Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions[J]. Physics Letters B, 1977, 69:489-494.
[19] Nath P, Arnowitt R L. Generalized supergauge symmetry as a new framework for unified gauge theories[J]. Physics Letters B, 1975, 56:177-180.
[20] Freedman D Z, van Nieuwenhuizen P, Ferrara S. Progress toward a theory of supergravity[J]. Physical Review D, 1976, 13:3214-3218.
[21] van Nieuwenhuizen P. Supergravity[J]. Physics Reports, 1981, 68:189-398.
[22] Salam A, Sezgin E. Supergravities in diverse dimensions[M]. Singapore:World Scientific, 1989:1499.
[23] Novak J, Ozkan M, Pang Y, et al. Gauss-Bonnet supergravity in six dimensions[J]. Physical Review Letters, 2017, 119(11):111602.
[24] Cremmer E, Julia B, Scherk J. Supergravity theory in eleven-dimensions[J]. Physics Letters B, 1978, 76:409-412.
[25] de Wit B, Nicolai H, Warner N P. The Embedding of gauged N=8 supergravity into d=11 supergravity[J]. Nuclear Physics B, 1985(255):29-62.
[26] Cvetič M, Lü H, Pope C N. Four-dimensional N=4, SO (4) gauged supergravity from D=11[J]. Nuclear Physics B, 2000(574):761-781.
[27] Duff M J. Ten to eleven:It is not too late[M]. Supersymmetry and Quantum Field Theory、Berlin, Heidelberg:Springer, 1997:59-63.
[28] Maldacena J M. The large N limit of superconformal field theories and supergravity[J]. International Journal of Theoretical Physics, 1999(38):1113-1133.