专题:交通强国建设

互联网大数据技术在智慧交通发展中的应用

  • 张博 ,
  • 庞基敏 ,
  • 章文嵩 ,
  • 郄小虎 ,
  • 刘向宏
展开
  • 北京嘀嘀无限科技发展有限公司, 北京 100193
张博,滴滴出行CTO,研究方向为智能交通、人机交互、人工智能,电子信箱:liuwenzhi@didiglobal.com

收稿日期: 2020-03-11

  修回日期: 2020-04-20

  网络出版日期: 2020-06-05

基金资助

国家重点研发计划项目(2018YFB1601005)

Application of big data technology in the development of intelligent transportation

  • ZHANG Bo ,
  • PANG Jimin ,
  • ZHANG Wensong ,
  • QIE Xiaohu ,
  • LIU Xianghong
Expand
  • Beijing DiDi Infinity Technology and Development Co., Ltd., Beijing 100193, China

Received date: 2020-03-11

  Revised date: 2020-04-20

  Online published: 2020-06-05

摘要

随着互联网大数据技术的发展,各种互联网+交通的新业态不断涌现,行业内出现了大量丰富的数据资源。在交通强国建设背景下,更好地利用互联网大数据技术为智慧交通发展赋能成为重要任务。针对传统信号控制系统优化频率低,数据采集设备完备度差等缺陷,采用网约车轨迹大数据技术研究智慧信号控制优化系统,介绍了系统架构、特征和信号控制优化技术。该系统在济南、武汉和柳州等城市的实践结果表明,在不依赖渠化及路口改造的前提下,仅通过信号控制优化及软件升级的方式,能有效地降低重点路段和路口的工作日早晚高峰平均延误时间和停车次数等关键指标,其降幅可达10%~20%,能够有效缓解交通拥堵现状。

本文引用格式

张博 , 庞基敏 , 章文嵩 , 郄小虎 , 刘向宏 . 互联网大数据技术在智慧交通发展中的应用[J]. 科技导报, 2020 , 38(9) : 47 -54 . DOI: 10.3981/j.issn.1000-7857.2020.09.007

Abstract

Various new types of Internet plus transportation are emerging and a large number of data resources have appeared. To build China's strength in transportation it is importank to make better use of big data technology to promote intelligent transportation. Aiming at the shortcomings of the traditional signal control system such as low optimization frequency and poor integrity of data acquisition equipment this paper develops an intelligent signal control system using ride hailing vehicle trajectory data. The architecture and characteristics of the control system, as well as optimization techniques, are introduced. Field experiments in Jinan, Wuhan and Liuzhou, respectively, have demonstrated that without relying on channelization and intersection reconstruction, only through signal control optimization and software upgrades, the average delay times of morning and evening peak hours and vehicle stop times are decreased by 10%-20%, thus effectively alleviating traffic congestion across the whole city level.

参考文献

[1] 杨琪, 刘冬梅. 交通运输大数据应用进展[J]. 科技导报, 2019, 37(6):66-72.
[2] 陆化普. 智能交通系统主要技术的发展[J]. 科技导报, 2019, 37(6):27-35.
[3] Sunkari S. The benefits of retiming traffic signals[J]. ITE Journal, 2004, 74(4):26-29.
[4] 刘义, 何均宏. 强化学习在城市交通信号灯控制方法中的应用[J]. 科技导报, 2019, 37(6):84-90.
[5] Herrera J C, Work D B, Herring R, et al. Evaluation of traffic data obtained via gps-enabled mobile phones:The mobile century field experiment[J]. Transportation Research Part C:Emerging Technologies, 2010, 18(4):568-583.
[6] Chen M, Chien S I J. Dynamic freeway travel-time prediction with probe vehicle data:Link based versus path based[J]. Transportation Research Record, 2001, 1768(1):157-161.
[7] Long Cheu R, Xie C, Lee D H. Probe vehicle population and sample size for arterial speed estimation[J]. Computer-Aided Civil and Infrastructure Engineering, 2002, 17(1):53-60.
[8] Hellinga B R, Fu L. Reducing bias in probe-based arterial link travel time estimates[J]. Transportation Research Part C:Emerging Technologies, 2002, 10(4):257-273.
[9] Nanthawichit C, Nakatsuji T, Suzuki H. Application of probe-vehicle data for real-time traffic-state estimation and short-term travel-time prediction on a freeway[J]. Transportation Research Record, 2003, 1855(1):49-59.
[10] Jenelius E, Koutsopoulos H N. Travel time estimation for urban road networks using low frequency probe vehicle data[J]. Transportation Research Part B:Methodological, 2013, 53:64-81.
[11] Zheng F, Van Zuylen H. Urban link travel time estimation based on sparse probe vehicle data[J]. Transportation Research Part C:Emerging Technologies, 2013, 31:145-157.
[12] Comert G. Simple analytical models for estimating the queue lengths from probe vehicles at traffic signals[J]. Transportation Research Part B:Methodological, 2013, 55:59-74.
[13] Comert G. Queue length estimation from probe vehicles at isolated intersections:Estimators for primary parameters[J]. European Journal of Operational Research, 2016, 252(2):502-521.
[14] Hao P, Ban X, Whon Yu J. Kinematic equation-based vehicle queue location estimation method for signalized intersections using mobile sensor data[J]. Journal of Intelligent Transportation Systems, 2015, 19(3):256-272.
[15] Christofa E, Argote J, Skabardonis A. Arterial queue spillback detection and signal control based on connected vehicle technology[J]. Transportation Research Record, 2013, 2366(1):61-70.
[16] Li J Q, Zhou K, Shladover S E, et al. Estimating queue length under connected vehicle technology:Using probe vehicle, loop detector, and fused data[J]. Transportation Research Record, 2013, 2356(1):17-22.
[17] Milanes V, Villagra J, Godoy J, et al. An intelligent V2I-based traffic management system[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(1):49-58.
[18] He Q, Head K L, Ding J. Multi-modal traffic signal control with priority, signal actuation and coordination[J]. Transportation Research part C:Emerging Technologies, 2014, 46:65-82.
[19] Guler S I, Menendez M, Meier L. Using connected vehicle technology to improve the efficiency of intersections[J]. Transportation Research Part C:Emerging Technologies, 2014, 46:121-131.
[20] Feng Y, Head K L, Khoshmagham S, et al. A real-time adaptive signal control in a connected vehicle environment[J]. Transportation Research Part C:Emerging Technologies, 2015, 55:460-473.
[21] Goodall N J, Smith B L, Park B B. Microscopic estimation of freeway vehicle positions from the behavior of connected vehicles[J]. Journal of Intelligent Transportation Systems, 2016, 20(1):45-54.
[22] Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society:Series B (Methodological), 1977, 39(1):1-22.
[23] Zheng F, Jabari S E, Liu H X, et al. Traffic state estimation using stochastic Lagrangian dynamics[J]. Transportation Research Part B:Methodological, 2018, 115:143-165.
[24] Zheng J, Liu H, Misgen S. Fine-tuning time-of-day transitions for arterial traffic signals[J]. Transportation Research Record, 2015, 2488(1):32-40.
文章导航

/