专题:能源-水-环境系统可持续发展

农业用地优化决策的食品-能源-水关联评价方法

  • 聂亚玲 ,
  • 肖炘 ,
  • 曾玉娇 ,
  • 朱闽 ,
  • 陆冬云 ,
  • 李杰
展开
  • 1. 中国科学院过程工程研究所, 北京 100190;
    2. 英国曼彻斯特大学化工与分析科学系过程集成中心, 曼彻斯特, 英国M13 9PL
聂亚玲,助理研究员,研究方向为过程建模与优化,电子信箱:ylnie@ipe.ac.cn

收稿日期: 2019-11-30

  修回日期: 2020-03-28

  网络出版日期: 2020-06-30

基金资助

中国科学院科技服务网络计划项目(KFJ-EW-STS-054-3)

Towards a food-energy-water nexus metric for agricultural land use optimization and decision

  • NIE Yaling ,
  • XIAO Xin ,
  • ZENG Yujiao ,
  • ZHU Min ,
  • LU Dongyun ,
  • LI Jie
Expand
  • 1. Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
    2. Centre for Process Integration, Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK M13 9PL

Received date: 2019-11-30

  Revised date: 2020-03-28

  Online published: 2020-06-30

摘要

农业用地系统优化决策旨在通过统筹食品-能源-水(FEW)和用地资源、经济投入以及环境可持续发展问题,在满足生产需求的基础上,实现节能增效等多个优化目标。目前,以FEW全生产要素为主开展实际食品-能源-水关联(FEW-N)的农业用地系统研究,尚缺乏能够全面量化评估不同决策影响的系统性评估指标。针对此现状,从资源合理利用角度出发,在中国山东省选择相关区域为典型研究对象,开展农业用地系统多目标优化和评估研究,以实现资源利用效率最大化和投入产出比最高为系统目标,提出一套系统多目标优化方法和综合评估指标,以实现用地和FEW资源配置的系统折衷最优。研究结果显示,以双线性整合方式为基础构建的FEW-N综合度量指标不仅能够高效求解多目标优化问题,获得系统折衷最优的用地和资源配置方案,还可以通过可视化方式对不同方案进行量化评估,提供决策依据。

本文引用格式

聂亚玲 , 肖炘 , 曾玉娇 , 朱闽 , 陆冬云 , 李杰 . 农业用地优化决策的食品-能源-水关联评价方法[J]. 科技导报, 2020 , 38(11) : 78 -88 . DOI: 10.3981/j.issn.1000-7857.2020.11.009

Abstract

Food, energy and water (FEW) are the three essential pillars for human-being and society. Agricultural land is the largest ecosystem to provide food for human by consuming a large amount of energy and water. As population increases, there is an increasing pressure to address issues of the resource allocation and other conflicting objectives. Systematic thinking based on food-energy-water nexus (FEW-N) is necessary for the modeling and the optimization of the systems. However, challenges arise in making decisions among conflicting objectives, such as the profit, the food demand, the friendly environment, and the efficient use of water and energy. Despite the global studies of data, models and multi-objective optimization techniques, the holistic studies navigating the land use problems, exploring the trade-offs of land and the FEW resources are still few and far between, as well as the general and quantitative metrics for different solutions of the land use systems. Taking an experimental station in Shandong province as a FEW-N land use system, series of composite FEW-N metrics are developed to help solve the multiobjective optimization problem with systematic assessments. Computational results indicate that the trade-offs among diverse stakeholders can be achieved most effectively and consistently based on the composite FEW-N metrics. All objective-related solutions can be quantitatively evaluated by the proposed metrics, and the geometric metric GA can provide a visualization tool for comparisons of different solutions, to help the policy-makers to adjust policies across different stakeholders, production sectors, and technologies.

参考文献

[1] Ellis E C, Ramankutty N. Putting people in the map:Anthropogenic biomes of the world[J]. Frontiers in Ecology and the Environment, Wiley Online Library, 2008, 6(8):439-447.
[2] Alexandratos N, Bruinsma J. World agriculture towards 2030/2050:The 2012 revision[R]. Rome:FAO, 2012.
[3] Sims R E."Energy-smart"food for people and climate:Issue paper[R]. Rome:FAO, 2011.
[4] Desa U. World population prospects:The 2015 revision, key findings and advance tables[M]. New York:United Nations Department of Economic and Social Affairs, Population Division, 2015.
[5] Ferroukhi R, Nagpal D, López-Peña Á, et al. Renewable energy in the water, energy & food nexus[M]. Abu Dhabi:IRENA, 2015.
[6] Ramankutty N, Mehrabi Z, Waha K, et al. Trends in global agricultural land use:Implications for environmental health and food security[J]. Annual Review of Plant Biology, 2018(69):789-815.
[7] Programme U N E. Global environment outlook 5:Environment for the future we want[M]. Nairobi:United Nations Environment Programme, 2012.
[8] WHO U. Progress on drinking water, sanitation and hygiene:2017 update and SDG baselines[R]. Switzerland:WHO, 2017.
[9] World Water Assessment Programme. The United Nations world water development report 4:Managing water under uncertainty and risk[M]. Paris:UNESCO, 2012.
[10] Dudley B. BP statistical review of world energy 2016[R]. London:BP, 2015.
[11] Cui K, Shoemaker S P. A look at food security in China[J]. npj Science of Food, 2018(2):4.
[12] Badarudin I, Sultan A B M, Sulaiman M N, et al. Metaheuristic approaches for optimizing agricultural land areas[C]//20092nd Conference on Data Mining and Optimization. IEEE, 2009:28-31.
[13] D'odorico P, Davis K F, Rosa L, et al. The global foodenergy-water nexus[J]. Reviews of Geophysics, 2018, 56(3):456-531.
[14] Howells M, Hermann S, Welsch M, et al. Integrated analysis of climate change, land-use, energy and water strategies[J]. Nature Climate Change, 2013, 3(7):621-626.
[15] Keairns D L, Darton R C, Irabien A. The energy-waterfood nexus[J]. Annual Review of Chemical and Biomolecular Engineering, 2016(7):239-262.
[16] Uen T S, Chang F J, Zhou Y L, et al. Exploring synergistic benefits of water-food-energy nexus through multiobjective reservoir optimization schemes[J]. Science of the Total Environment, 2018(633):341-351.
[17] Dhaubanjar S, Davidsen C, Bauer-Gottwein P. Multi-objective optimization for analysis of changing trade-offs in the nepalese water-energy-food nexus with hydropower development[J]. Water, 2017, 9(3):162.
[18] Chiandussi G, Codegone M, Ferrero S, et al. Comparison of multi-objective optimization methodologies for engineering applications[J]. Computers & Mathematics with Applications, 2012, 63(5):912-942.
[19] Marler R T, Arora J S. Survey of multi-objective optimization methods for engineering[J]. Structural and Multidisciplinary Optimization, 2004, 26(6):369-395.
[20] Zapotecas-Martinez S, Coello C A C, Aguirre H E, et al. A review of features and limitations of existing scalable multiobjective test suites[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(1):130-142.
[21] Zhu W, Huang Y, Sun Z. Mapping crop leaf area index from multi-spectral imagery onboard an unmanned aerial vehicle[C]//2018 7th International Conference on Agro-geoinformatics (Agro-geoinformatics). IEEE, 2018:1-5.
[22] Fang Q X, Yu Q, Wang E L, et al. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat-maize double cropping system in the North China Plain[J]. Plant and Soil, 2006, 284(1-2):335-350.
[23] Nie Y L, Avraamidou S, Li J, et al. Land use modeling and optimization based on food-energy-water nexus:A case study on crop-livestock systems[M]//Computer Aided Chemical Engineering. Netherlands:Elsevier, 2018, 44:1939-1944.
[24] Nie Y L, Avraamidou S, Xiao X, et al. A food-energywater nexus approach for land use optimization[J]. Science of the Total Environment, 2019(659):7-19.
文章导航

/