[1] Whitesides G M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101):368-373.
[2] Neuži P, Giselbrecht S, Länge K, et al. Revisiting lab-ona-chip technology for drug discovery[J]. Nature Reviews Drug Discovery, 2012, 11(8):620.
[3] Mao X, Huang T J. Microfluidic diagnostics for the developing world[J]. Lab on a Chip, 2012, 12(8):1412-1416.
[4] Kovarik M L, Ornoff D M, Melvin A T, et al. Micro total analysis systems:Fundamental advances and applications in the laboratory, clinic, and field[J]. Analytical Chemistry, 2013, 85(2):451-72.
[5] Arora A, Simone G, Salieb-Beugelaar G B, et al. Latest developments in micro total analysis systems[J]. Analytical Chemistry, 2010, 82(12):4830-4847.
[6] Ding X, Li P, Lin S C, et al. Surface acoustic wave microfluidics[J]. Lab on a Chip, 2013, 13(18):3626-3649.
[7] Wheeler A R. Chemistry. Putting electrowetting to work[J]. Science, 2008, 322(5901):539-540.
[8] Eydelnant I A, Uddayasankar U, Li B, et al. Virtual microwells for digital microfluidic reagent dispensing and cell culture[J]. Lab on a Chip, 2012, 12(4):750-757.
[9] Tseng P, Judy J W, Carlo D D. Magnetic nanoparticle-mediated massively-parallel mechanical modulation of single-cell behavior[J]. Nature Methods, 2012, 9(11):1113-1119.
[10] Schmidt H, Hawkins A R. The photonic integration of non-solid media using optofluidics[J]. Nature Photonics, 2011, 5(10):598-604.
[11] Zhao Y, Stratton Z S, Guo F, et al. Optofluidic imaging:Now and beyond[J]. Lab on a Chip, 2013, 13(1):17-24.
[12] Psaltis D, Quake S R, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics.[J]. Nature, 2006, 442(7101):381-386.
[13] 杨旭豪. 基于声表面波技术可控合成金纳米粒子的实验研究[D]. 吉林:吉林大学, 2016.
[14] Lin S C, Mao X, Huang T J. Surface acoustic wave (SAW) acoustophoresis:Now and beyond[J]. Lab on a Chip, 2012, 12(16):2766-2770.
[15] Wu M, Mao Z, Chen K, et al. Acoustic separation of nanoparticles in continuous flow[J]. Advanced Functional Materials, 2017, 27(14):509.
[16] Lapsley M I, Wang L, Huang T J. On-chip flow cytometry:Where is it now and where is it going[J]. Biomarkers in Medicine, 2013, 7(1):75-78.
[17] Shi J, Mao X, Ahmed D, et al. Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW)[J]. Lab on a Chip, 2008, 8(2):221-223.
[18] Zeng Q, Chan H W L, Zhao X Z, et al. Enhanced particle focusing in microfluidic channels with standing surface acoustic waves[J]. Microelectronic Engineering, 2010, 87(5):1204-1206.
[19] Shi J, Yazdi S, Lin S C, et al. Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW)[J]. Lab on a Chip, 2011, 11(14):2319-2324.
[20] Chen K, Wu M, Guo F, et al. Rapid formation of sizecontrollable multicellular spheroids via 3D acoustic tweezers[J]. Lab on a Chip, 2016, 16(14):2636.
[21] Lata J P, Guo F, Guo J, et al. Surface acoustic waves grant superior spatial control of cells embedded in hydrogel fibers[J]. Advanced Materials, 2016, 28(39):8632-8638.
[22] Shi J, Huang H, Stratton Z, et al. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW)[J]. Lab on a Chip, 2009, 9(23):3354-3359.
[23] Li S, Ma F, Bachman H, et al. Acoustofluidic bacteria separation[J]. Journal of Micromechanics & Microengineering Structures Devices & Systems, 2017, 27(1):015031.
[24] Wu M, Ouyang Y, Wang Z, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(40):201709210.
[25] Nam J, Lim H, Kim D, et al. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel[J]. Lab on a Chip, 2011, 11(19):3361-3364.
[26] Ai Y, Marrone B L. Separation of biological cells in a microfluidic device using surface acoustic waves (SAWs)[C]//Microfluidics, BioMEMS, and Medical Microsystems XII. San Francisco:International Society for Optics and Photonics, 2014(8976):897600.
[27] Ai Y, Sanders C K, Marrone B L. Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves[J]. Analytical Chemistry, 2013, 85(19):9126-9134.
[28] Fakhfouri A, Devendran C, Collins D J, et al. Virtual membrane for filtration of particles using surface acoustic waves (SAW)[J]. Lab on a Chip, 2016, 16(18):3515-3523.
[29] Wu M, Mao Z, Chen K, et al. Acoustic separation of nanoparticles in continuous flow[J]. Advanced Functional Materials, 2017, 27(14):509.
[30] Jo M C, Guldiken R. Active density-based separation using standing surface acoustic waves[J]. Sensors & Actuators A Physical, 2012, 187(8):22-28.
[31] Li S, Ding X, Mao Z, et al. Standing surface acoustic wave (SSAW)-based cell washing[J]. Lab on a Chip, 2015, 15(1):331.
[32] Ayan B, Ozcelik A, Tang S Y, et al. Acoustofluidic coating of particles and cells[J]. Lab on a Chip, 2016, 16(22):4366.
[33] Kishor R, Ma Z, Sreejith S, et al. Real time size-dependent particle segregation and quantitative detection in a surface acoustic wave-photoacoustic integrated microfluidic system[J]. Sensors & Actuators B Chemical, 2017(252):568-576.
[34] Ding X, Lin S C, Lapsley M I, et al. Standing surface acoustic wave (SSAW) based multichannel cell sorting[J]. Lab on A Chip, 2012, 12(21):4228-4231.
[35] Li S, Ding X, Guo F, et al. An on-chip, multichannel droplet sorter using standing surface acoustic waves[J]. Analytical Chemistry, 2013, 85(11):5468-5474.
[36] Shi J, Ahmed D, Mao X, et al. Acoustic tweezers:Patterning cells and microparticles using standing surface acoustic waves (SSAW)[J]. Lab on a Chip, 2009, 9(20):2890-2895.
[37] Wood C D, Cunningham J E, O'Rorke R, et al. Formation and manipulation of two-dimensional arrays of micron-scale particles in microfluidic systems by surface acoustic waves[J]. Applied Physics Letters, 2009, 94(5):213.
[38] Ding X, Lin S C, Kiraly B, et al. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(28):11105-11109.
[39] Guo F, Li P, French J B, et al. Controlling cell-cell interactions using surface acoustic waves[J]. Proceedings of the National Academy of Science, 2015, 112(1):43.
[40] Guo F, Mao Z, Chen Y, et al. Three-dimensional manipulation of single cells using surface acoustic waves[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(6):1522.
[41] Nguyen T D, Tran V T, Fu Y Q, et al. Patterning and manipulating microparticles into a three-dimensional matrix using standing surface acoustic waves[J]. Applied Physics Letters, 2018, 112(21):213507.
[42] Bian Y, Guo F, Yang S, et al. Acoustofluidic waveguides for localized control of acoustic wavefront in microfluidics[J]. Microfluidics & Nanofluidics, 2017, 21(8):132.
[43] Ding X, Shi J, Lin S C S, et al. Tunable patterning of microparticles and cells using standing surface acoustic waves[J]. Lab on a Chip, 2012, 12(14):2491-2497.
[44] Zhou W, Niu L, Cai F, et al. Spatial selective manipulation of microbubbles by tunable surface acoustic waves[J]. Biomicrofluidics, 2016, 10(3):77-85.