综述

声表面驻波在微流控领域的应用

  • 董惠娟 ,
  • 王敬轩 ,
  • 李天龙
展开
  • 哈尔滨工业大学机器人技术与系统国家重点实验室, 哈尔滨 150001
董惠娟,教授,研究方向为驻波声悬浮,电子信箱:dhj@hit.edu.cn

收稿日期: 2019-02-19

  修回日期: 2019-09-09

  网络出版日期: 2020-06-30

基金资助

国家自然科学基金项目(51675140)

Application of standing surface acoustic wave in the field of microfluidics

  • DONG Huijuan ,
  • WANG Jingxuan ,
  • LI Tianlong
Expand
  • State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China

Received date: 2019-02-19

  Revised date: 2019-09-09

  Online published: 2020-06-30

摘要

声表面驻波(SSAW)因其非接触性及生物相容性,目前已被广泛应用于微流控领域,在生物医学、诊断学等领域有着广阔的应用前景。概述了声表面驻波的形成过程和对微流体中粒子的控制机理;综合当前该技术国内外研究现状,分析了在微流控领域中声表面驻波相对于其他物理场的优势;针对声表面驻波在微流控领域中存在的问题对未来的研究提出了合理展望。

本文引用格式

董惠娟 , 王敬轩 , 李天龙 . 声表面驻波在微流控领域的应用[J]. 科技导报, 2020 , 38(11) : 131 -140 . DOI: 10.3981/j.issn.1000-7857.2020.11.015

Abstract

The standing acoustic surface waves, because of their non-contact nature and the biocompatibility, are widely used in the field of microfluidic control, with a broad application prospect in the fields of biomedicine and diagnostics. The formation of surface standing waves and the control mechanism of particles in microfluidics are reviewed. The advantages of surface standing waves over other physical means in the field of microfluidic control are analyzed. Finally, the future research directions of standing wave in the field of microfluidics are suggested.

参考文献

[1] Whitesides G M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101):368-373.
[2] Neuži P, Giselbrecht S, Länge K, et al. Revisiting lab-ona-chip technology for drug discovery[J]. Nature Reviews Drug Discovery, 2012, 11(8):620.
[3] Mao X, Huang T J. Microfluidic diagnostics for the developing world[J]. Lab on a Chip, 2012, 12(8):1412-1416.
[4] Kovarik M L, Ornoff D M, Melvin A T, et al. Micro total analysis systems:Fundamental advances and applications in the laboratory, clinic, and field[J]. Analytical Chemistry, 2013, 85(2):451-72.
[5] Arora A, Simone G, Salieb-Beugelaar G B, et al. Latest developments in micro total analysis systems[J]. Analytical Chemistry, 2010, 82(12):4830-4847.
[6] Ding X, Li P, Lin S C, et al. Surface acoustic wave microfluidics[J]. Lab on a Chip, 2013, 13(18):3626-3649.
[7] Wheeler A R. Chemistry. Putting electrowetting to work[J]. Science, 2008, 322(5901):539-540.
[8] Eydelnant I A, Uddayasankar U, Li B, et al. Virtual microwells for digital microfluidic reagent dispensing and cell culture[J]. Lab on a Chip, 2012, 12(4):750-757.
[9] Tseng P, Judy J W, Carlo D D. Magnetic nanoparticle-mediated massively-parallel mechanical modulation of single-cell behavior[J]. Nature Methods, 2012, 9(11):1113-1119.
[10] Schmidt H, Hawkins A R. The photonic integration of non-solid media using optofluidics[J]. Nature Photonics, 2011, 5(10):598-604.
[11] Zhao Y, Stratton Z S, Guo F, et al. Optofluidic imaging:Now and beyond[J]. Lab on a Chip, 2013, 13(1):17-24.
[12] Psaltis D, Quake S R, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics.[J]. Nature, 2006, 442(7101):381-386.
[13] 杨旭豪. 基于声表面波技术可控合成金纳米粒子的实验研究[D]. 吉林:吉林大学, 2016.
[14] Lin S C, Mao X, Huang T J. Surface acoustic wave (SAW) acoustophoresis:Now and beyond[J]. Lab on a Chip, 2012, 12(16):2766-2770.
[15] Wu M, Mao Z, Chen K, et al. Acoustic separation of nanoparticles in continuous flow[J]. Advanced Functional Materials, 2017, 27(14):509.
[16] Lapsley M I, Wang L, Huang T J. On-chip flow cytometry:Where is it now and where is it going[J]. Biomarkers in Medicine, 2013, 7(1):75-78.
[17] Shi J, Mao X, Ahmed D, et al. Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW)[J]. Lab on a Chip, 2008, 8(2):221-223.
[18] Zeng Q, Chan H W L, Zhao X Z, et al. Enhanced particle focusing in microfluidic channels with standing surface acoustic waves[J]. Microelectronic Engineering, 2010, 87(5):1204-1206.
[19] Shi J, Yazdi S, Lin S C, et al. Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW)[J]. Lab on a Chip, 2011, 11(14):2319-2324.
[20] Chen K, Wu M, Guo F, et al. Rapid formation of sizecontrollable multicellular spheroids via 3D acoustic tweezers[J]. Lab on a Chip, 2016, 16(14):2636.
[21] Lata J P, Guo F, Guo J, et al. Surface acoustic waves grant superior spatial control of cells embedded in hydrogel fibers[J]. Advanced Materials, 2016, 28(39):8632-8638.
[22] Shi J, Huang H, Stratton Z, et al. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW)[J]. Lab on a Chip, 2009, 9(23):3354-3359.
[23] Li S, Ma F, Bachman H, et al. Acoustofluidic bacteria separation[J]. Journal of Micromechanics & Microengineering Structures Devices & Systems, 2017, 27(1):015031.
[24] Wu M, Ouyang Y, Wang Z, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(40):201709210.
[25] Nam J, Lim H, Kim D, et al. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel[J]. Lab on a Chip, 2011, 11(19):3361-3364.
[26] Ai Y, Marrone B L. Separation of biological cells in a microfluidic device using surface acoustic waves (SAWs)[C]//Microfluidics, BioMEMS, and Medical Microsystems XII. San Francisco:International Society for Optics and Photonics, 2014(8976):897600.
[27] Ai Y, Sanders C K, Marrone B L. Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves[J]. Analytical Chemistry, 2013, 85(19):9126-9134.
[28] Fakhfouri A, Devendran C, Collins D J, et al. Virtual membrane for filtration of particles using surface acoustic waves (SAW)[J]. Lab on a Chip, 2016, 16(18):3515-3523.
[29] Wu M, Mao Z, Chen K, et al. Acoustic separation of nanoparticles in continuous flow[J]. Advanced Functional Materials, 2017, 27(14):509.
[30] Jo M C, Guldiken R. Active density-based separation using standing surface acoustic waves[J]. Sensors & Actuators A Physical, 2012, 187(8):22-28.
[31] Li S, Ding X, Mao Z, et al. Standing surface acoustic wave (SSAW)-based cell washing[J]. Lab on a Chip, 2015, 15(1):331.
[32] Ayan B, Ozcelik A, Tang S Y, et al. Acoustofluidic coating of particles and cells[J]. Lab on a Chip, 2016, 16(22):4366.
[33] Kishor R, Ma Z, Sreejith S, et al. Real time size-dependent particle segregation and quantitative detection in a surface acoustic wave-photoacoustic integrated microfluidic system[J]. Sensors & Actuators B Chemical, 2017(252):568-576.
[34] Ding X, Lin S C, Lapsley M I, et al. Standing surface acoustic wave (SSAW) based multichannel cell sorting[J]. Lab on A Chip, 2012, 12(21):4228-4231.
[35] Li S, Ding X, Guo F, et al. An on-chip, multichannel droplet sorter using standing surface acoustic waves[J]. Analytical Chemistry, 2013, 85(11):5468-5474.
[36] Shi J, Ahmed D, Mao X, et al. Acoustic tweezers:Patterning cells and microparticles using standing surface acoustic waves (SSAW)[J]. Lab on a Chip, 2009, 9(20):2890-2895.
[37] Wood C D, Cunningham J E, O'Rorke R, et al. Formation and manipulation of two-dimensional arrays of micron-scale particles in microfluidic systems by surface acoustic waves[J]. Applied Physics Letters, 2009, 94(5):213.
[38] Ding X, Lin S C, Kiraly B, et al. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(28):11105-11109.
[39] Guo F, Li P, French J B, et al. Controlling cell-cell interactions using surface acoustic waves[J]. Proceedings of the National Academy of Science, 2015, 112(1):43.
[40] Guo F, Mao Z, Chen Y, et al. Three-dimensional manipulation of single cells using surface acoustic waves[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(6):1522.
[41] Nguyen T D, Tran V T, Fu Y Q, et al. Patterning and manipulating microparticles into a three-dimensional matrix using standing surface acoustic waves[J]. Applied Physics Letters, 2018, 112(21):213507.
[42] Bian Y, Guo F, Yang S, et al. Acoustofluidic waveguides for localized control of acoustic wavefront in microfluidics[J]. Microfluidics & Nanofluidics, 2017, 21(8):132.
[43] Ding X, Shi J, Lin S C S, et al. Tunable patterning of microparticles and cells using standing surface acoustic waves[J]. Lab on a Chip, 2012, 12(14):2491-2497.
[44] Zhou W, Niu L, Cai F, et al. Spatial selective manipulation of microbubbles by tunable surface acoustic waves[J]. Biomicrofluidics, 2016, 10(3):77-85.
文章导航

/