综述

中高层大气密度研究态势及热点分析

  • 闫亚飞 ,
  • 李永平
展开
  • 1. 中国科学院文献情报中心, 北京 100190;
    2. 中国科学院国家空间科学中心天基空间环境探测北京市重点实验室, 中国科学院空间环境态势感知技术重点实验室, 北京 100190
闫亚飞,硕士,研究方向为情报分析,电子信箱:yanyf@mail.las.ac.cn

收稿日期: 2019-06-30

  修回日期: 2020-04-06

  网络出版日期: 2020-06-30

基金资助

中国科学院文献情报中心研究所科研知识服务网络建设项目(Y9291105)

Development trend and hotspot analysis of middle and upper atmospheric density researches

  • YAN Yafei ,
  • LI Yongping
Expand
  • 1. National Science Library, Chinese Academy of Sciences, Beijing 100190, China;
    2. Beijing Key Laboratory of Space Environment Exploration, Key Laboratory of Environmental Space Situation Awareness Technology, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2019-06-30

  Revised date: 2020-04-06

  Online published: 2020-06-30

摘要

中高层大气在日地空间环境中起着承上启下的作用,同时也是热层、电离层和磁层耦合研究的重要领域,而中高层大气密度是大气环境的重要参数,是当前空间科学研究的热点,因此国内外学者开展了大量的研究工作。基于文献计量学的视角,分析了中高层大气密度研究的发展历程、主要研究国家、重点机构、资助基金和研究热点。通过分析可以看到,中高层大气密度研究领域年度发文呈现波动上升趋势,全球整体发文趋势受美国、德国、中国、法国和英国5个主要国家的影响较大。美国在该领域的研发机构数量非常多,尤其是美国科罗拉多大学和美国国家航空航天局科研实力雄厚,且相互之间科研合作非常密切。中国进入该领域较晚,但发展迅速,研究队伍、研究成果和基金数量进步明显,已经开展了神舟飞船、APOD(Atmospheric density and Precise Orbit Determination)卫星、天宫实验室、气象卫星等重大项目的大气密度探测,获取了大量高精度实测数据。目前该领域的研究热点主要集中在中高层大气密度多手段探测、高精度大气模型建立及大气密度预报等方面。

本文引用格式

闫亚飞 , 李永平 . 中高层大气密度研究态势及热点分析[J]. 科技导报, 2020 , 38(11) : 141 -151 . DOI: 10.3981/j.issn.1000-7857.2020.11.016

Abstract

The middle and upper atmosphere plays an important role in the solar-terrestrial space environment. It is also an important field for the study of the coupling of the thermosphere, the ionosphere and the magnetosphere. A great amount of research work in this respect was carried out both at home and abroad. With the bibliometric analysis method, this paper analyzes the development process, the main countries concerned, the key institutions, the funding and the research hotspots related with the middle and upper atmospheric density. Through the publication data analysis, it can be concluded that the annual publication in this field shows a rising trend of fluctuation. The overall global publication trend is greatly affected by the United States, Germany, China, France and the United Kingdom. The United States shares a large number of R & D institutions in this field. The University of Colorado and the National Aeronautics and Space Administration have a great scientific research capability. They have a very close scientific research cooperation with each other. Chinese institutions started related scientific researches later, but with a very rapid development. The numbers of research teams, the research achievements, and the funds have increased significantly. Important projects have been implemented, such as Shenzhou spacecraft, APOD (Atmospheric density and Precise Orbit Determination) satellites, Tiangong laboratory, and meteorological satellites for the density detection, have obtained a large amount of high-precision measured data. The density detection by multiple methods, the establishment of high-precision atmospheric models and the prediction of atmospheric density are the current research hotspots of middle and upper atmosphere researches.

参考文献

[1] Emmert J T. Thermospheric mass density:A review[J]. Advances in Space Research, 2015(56):773-824.
[2] Barlier F, Berger C, Falin J L, et al. Thermospheric model based on satellite drag data[J]. Annicae geophysales, 1978, 34(1):9-24.
[3] Liu H, Lühr H, Henize V, et al. Global distribution of the thermospheric total mass density derived from CHAMP[J/OL]. Journal of Geophysical Research:Space Physics, 2005, 110(4), https://doi.org/10.1029/2004JA010741.
[4] Xu J Y, Wang W B, Lei J H, et al. The effect of periodic variations of thermospheric density on CHAMP and GRACE orbits[J/OL]. Journal of Geophysical Research Space Physics, 2011, 116(2), https://doi.org/10.1029/2010JA015995.
[5] Bruinsma S, Tamagnan D. Atmospheric densities derived from CHAMP/STAR accelerometer observations[J]. Planetary and Space Science, 2004(52):297-312.
[6] 陈光明, 符养, 薛震刚, 等.利用星载加速度计数据反演高层大气密度的方法[J]. 解放军理工大学学报(自然科学版), 2010, 11(3):371-376.
[7] Osborne J J, Harris I L, Roberts G T, et al. Satellite and rocket-borne atomic oxygen sensor techniques[J]. Review of Scientific Instruments, 2001, 72(11):4025-4041.
[8] Clemmons J H, Hecht J H, Salem D R, et al. Thermospheric density in the Earth's magnetic cusp as observed by the Streak mission[J]. Geophysical Research Letters, 2008(35):24103.
[9] 秦国泰, 邱时彦, 贺爱卿, 等. 神舟2号大气密度探测器的探测结果(Ⅰ)日照和阴影区域热层大气密度变化[J]. 空间科学学报, 2002, 22(2):136-141.
[10] 秦国泰, 邱时彦, 贺爱卿, 等."神舟3号" 运行高度上大气密度的变化[J].空间科学学报, 2004(4):269-74.
[11] 李勰, 徐寄遥, 唐歌实, 等. APOD卫星大气密度数据处理与标校[J]. 地球物理学报, 2018, 61(9):3567-3576.
[12] Tang G S, Li X, Cao J F, et al. APOD mission status and preliminary results[J]. Science China Earth Sciences, 2020, 63(2):257-266.
[13] Offermann D. Composition variations in the lower thermosphere[J]. Journal of Geophysical Research, 1974, 79(28):4281-4293.
[14] 陈华姣, 秦国泰, 李永平, 等. 天宫一号大气密度探测数据与模式的比较分析[J]. 载人航天, 2013(6):38-42.
[15] 李永平, 朱光武, 秦国泰, 等. 不同高度和不同地磁扰动期间热层大气密度模式值与探测值的显著差异[J]. 地球物理学报, 2014, 57(11):3703-3714.
[16] 李永平, 朱光武, 秦国泰, 等. 地磁扰动期间热层大气N2数密度异常增变[J]. 中国科学(技术科学), 2014, 44(8):883-889.
[17] Guotai Q. Disturbance of the upper atmospheric density during August 24, 2005 severe geomagnetic storm event[J]. Chinese Journal of Space Science, 2008, 28(2):137-141
[18] 李永平, 孙越强, 王馨悦, 等. 两分两至点热层大气密度变化[J]. 科技导报, 2019, 37(6):104-113.
[19] Fleming E L, Chandra S, Burrage M D, et al. Climatological mean wind observations from the UARS high-resolution doppler imager and wind imaging interferometer:Comparison with current reference models[J]. Journal of Geophysical Research Atmospheres. 1996, 101(6):10455-10473.
[20] 任海根, 李盛阳. 天宫二号对地观测应用研究进展[J]. 载人航天, 2019, 25(6):825-833.
[21] 陈凤贵, 陈光明, 刘克华. 临近空间环境及其影响分析[J]. 装备环境工程, 2013(4):71-75.
[22] 李大耀. 火箭探空活动的领域和价值[J]. 中国航天, 1992(12):12-13.
[23] 姜秀杰, 刘波, 于世强, 等. 探空火箭的发展现状及趋势[J]. 科技导报, 2009, 27(23):101-110.
[24] Bowman B R, Tobiska W K, Marcos F A, et al. The JB2006 empirical thermospheric density model[J]. Journal of Atmospheric & Solar Terrestrial Physics, 2008, 70(5):774-793.
[25] Berger C, Biancale R, Ill M, et al. Improvement of the empirical thermospheric model DTM:DTM94-A comparative review of various temporal variations and prospects in space geodesy applications[J]. Journal of Geodesy, 1998, 72(3):161-178.
[26] Hedin A E. A Revised thermospheric model based on mass spectrometer and incoherent scatter data:MSIS-83[J]. Journal of Geophysical Research, 1983, 88(12):10170.
[27] Hedin A E. MSIS-86 Thermosphericmodel[J]. Journal of Geophysical Research Space Physics, 1987, 92(5):4649-4662.
[28] Hedin A E. Extension of the MSIS thermosphere model into the middle and lower atmosphere[J]. Journal of Geophysical Research:Space Physics, 1991, 96(2):1159-1172.
[29] PiconeJ M. NRLMSISE-00 empirical model of the atmosphere:Statistical comparisons and scientific issues[J]. Journal of Geophysical Research, 2002, 107(12):1468.
文章导航

/