以木质纤维素为基体,采用浸渍、高温碳化的方法制备了木质碳纤维负载的钴纳米颗粒(Co/CFs)电催化剂。利用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等对样品的化学组成和微观形貌进行了表征分析,并借助电化学工作站测试了样品的电催化析氢性能。结果表明,CFs的引入有效缓解了Co纳米颗粒(Co NPs)易团聚的问题,有利于实现活性位点的最大程度暴露。当Co/CFs用作析氢催化剂,达到10 mA·cm-2的电流密度时需要的过电位仅为250 mV,并可保持长达15 h的催化稳定性。
The carbon fibers-supported cobalt nanoparticles (Co/CFs) electrocatalyst with lignocellulose as a matrix is prepared by impregnating and then carbonizing at a high temperature. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM)and Transmission Electron Microscopy (TEM) are used to analyze the compositions and the micromorphology of the samples. And the electrocatalytic activities are tested by a CHI workstation. It is shown that the use of CFs alleviates the problem of easy agglomeration of Co nanoparticles (Co NPs), which is conducive to achieve a maximum exposure of active sites. When used as a hydrogen evolution catalyst, only a low overpotential of 250 mV is required for obtaining a current density of 10 mA cm-2 and the catalyst could also maintain its stability for a time as long as 15 h.
[1] 熊昆, 高媛, 周桂林.电解水析氢非铂催化剂的设计与发展[J]. 中国有色金属学报, 2017, 27(6):1289-1301.
[2] Xiao B X, Wei Z, Senlin Y, et al. Advanced catalysts for hydrogen evolution reaction based on MoS2/NiCo2S4 heterostructures in alkaline media[J]. International Journal of Hydrogen Energy, 2020, 45(3):1759-1768.
[3] 黄映恒, 侯蕾,童张法, 等.玻碳基Pt/C/NH4NiPO4复合电极电催化性能[J]. 科技导报, 2013, 31(31):15-19.
[4] 潘致宇. 过渡金属基电催化析氢材料的研究进展[J]. 当代化工研究, 2019, 38(2):148-149
[5] 张晓, 何小波, 李响, 等. 基于Fe、Co、Ni的电催化析氢催化剂的研究进展[J]. 新型工业化, 2016, 6(10):1-9.
[6] Yue L X, Xiao X D, Jun F M, et al. Facile preparation of Ni, Co alloys supported on porous carbon spheres for supercapacitors and hydrogen evolution reaction application[J]. International Journal of Hydrogen Energy, 2019, 45(3):1466-1476.
[7] 周琦, 段德东, 冯基伟. Ni-Co/RuO2复合电极的制备及其电催化析氢性能[J]. 无机化学学报, 2019, 35(12):2301-2310.
[8] 朱晓琳. 钴基催化剂的合成、表征及催化性能研究[D]. 北京:北京化工大学, 2015.
[9] 刘志斌, 张学勤.木质纤维素生物质催化转化为高附加值产品的研究进展[J]. 纤维素科学与技术, 2019, 27(3):77-82.
[10] 张泽霞, 吕瑞涛, 黄正宏, 等. 碳基材料在电催化析氢反应中的应用[J]. 新型炭材料, 2019, 34(2):115-131.
[11] 吕帅, 匡婷, 王立, 等. 碳球负载钴纳米颗粒的可控合成及其费-托合成催化性能[J]. 分子科学学报, 2019, 35(1):76-81.
[12] Hong C, Rui H, Qiang C L, et al. CNFs@carbonaceous Co/CoO composite derived from CNFs penetratedthrough ZIF-67 for high-efficient electromagnetic wave absorptionmaterial[J]. Journal of Alloys and Compounds, 2018, 752:115-122.
[13] Xun D Z, Ya L, Yu K G, et al. 3D hierarchical nanostructured Ni-Co alloy electrodes on porous nickel for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2019, 44(57):29946-29955.
[14] 陈孝娥, 崔旭梅, 曾志勇, 等. NaCl作为添加剂对钒电池正极电解液性能的影响[J]. 电源技术, 2018, 42(6):840-842.
[15] Ru C L, Dan Z, Jia X L, et al. The urchin-like sphere arrays Co3O4 as a bifunctional catalyst for hydrogen evolution reaction and oxygen evolution reaction[J]. Journal of Power Sources, 2017, 341:250-256.
[16] Xiao J F, Ze G W, Yin W, et al. Tuning quaternary hybride Co-Ni-S-Se composition as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions[J]. International Journal of Hydrogen Energy, 2019, 44(51):27685-27694.