专题:先进组合动力飞行器

火箭基组合循环动力研究进展

  • 张玫 ,
  • 张蒙正 ,
  • 刘昊
展开
  • 西安航天动力研究所, 西安 710100
张玫,高级工程师,研究方向为液体火箭发动机,电子信箱:1308328295@qq.com

收稿日期: 2019-11-09

  修回日期: 2020-05-10

  网络出版日期: 2020-08-05

Progress and analysis of rocket based combined cycle(RBCC) propulsion system

  • ZHANG Mei ,
  • ZHANG Mengzheng ,
  • LIU Hao
Expand
  • Xi'an Aerospace Propulsion Institute, Xi'an 710100, China

Received date: 2019-11-09

  Revised date: 2020-05-10

  Online published: 2020-08-05

摘要

重复使用是运载器发展的必然途径,火箭基组合循环发动机是可重复运载器动力的重要方向。介绍了国内外典型RBCC发动机方案和关键技术研究现状,分析了RBCC发动机的主要技术特点及应用前景。可以弥补火箭或冲压单一类型发动机功能或者性能的不足,具有火箭大推重比、冲压高比冲的特点,是RBCC动力系统区别于其他发动机的重要特征。结合当前技术水平,灵活运用组合发动机的特点,形成不同的发动机方案,适用不同运载任务要求,是RBCC动力系统研究的重要思路。中国应加快RBCC发动机应用论证和关键技术攻关,形成技术方案,为可重复使用运载器长远发展做出贡献。

本文引用格式

张玫 , 张蒙正 , 刘昊 . 火箭基组合循环动力研究进展[J]. 科技导报, 2020 , 38(12) : 54 -68 . DOI: 10.3981/j.issn.1000-7857.2020.12.005

Abstract

Reuse is a promising technology for launch vehicles. Rocket based combined cycle(RBCC) propulsion system is a good choice for reusable launch vehicles. In this article the development status of RBCC engine and key technological issues are described, possible application areas, and development path are analyzed as well. To make full use of the advantages of ramjet and rocket engine and remedy function disfigurement and performance deficiency of LRE(改为全称) or ramjet distinguishes RBCC engine from other power engines. On the basis of current technologies, the RBCC engine solution formed by different working modals and engine configurations is the developmental route of RBCC power system to meet the needs of fly mission.

参考文献

[1] 张蒙正, 李平, 陈祖奎. 组合循环动力系统面临的挑战及前景[J]. 火箭推进, 2009, 35(1):1-8.
[2] 张蒙正, 李斌, 王君, 等. 关于RBCC动力系统的一点思考[J]. 火箭推进, 2013, 39(1):1-7.
[3] Adam S, Thomas J B. Integratuion and vehicle performance assessment of the aerojet "Trijet" combined-cycle engine[C]//16th AIAA/DLR/DGLR International Space Planes and Hypersonic and Technologies Conference. Bremen:AIAA, 2009.
[4] Mark H. Progress on Skylon and SABRE[J/OL].[2019-11-01]. https://www.researchgate.net/publication/289579461_Progress_on_SKYLON_and_SABRE.
[5] David A Y, Timothy K, Ian C, et al. Lazarus:a TSTO hypersonic vehicle concept utilizing RBCC and HEOM propultion technologies[C]//14th AIAA/AHI Space Planes and Hypersonic System and Technologies Conference. Fort Lauderdale:AIAA, 2006.
[6] Thomas M K, Joseph M R, John P R. Affordable flight demonstration of the GTX air-breathing SSTO vehicle concept[C]//Combustion,Airbreathing Propulsion Systems Hazards, and Modelling and Simulation Subcommittees Joint Meeting. Dwstin Florida:NASA/TM, 2002.
[7] Jos'eph N S, Thomas J B. Assessment of RBCC-powered VTHL SST0 vehicles[C]//9th International Space Planes and Hypersonic Systems and Techologies Conference. Norfolk:AIAA, 1999.
[8] Joseph M H, Dean R E. TSTO reusable launch vehicles using airbreathing propulsion[C]//42nd AIAA/ASME/SAE/ASEE Joint Propusion Conference & Exhibit. Sacramento:AIAA, 2006.
[9] Ajay P K, John W L. Rocket based combined cycle hypersonic vehicle design for orbital access[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. San Francisco:AIAA, 2011.
[10] Pryor D, Hyde E, Escher W. Development of a 12-thrust chamber kerosene/oxygen primary rocket subsystem for an early(1964) air-augmented rocket ground test system[J]. American Institute of Aeronautics Astronautics, 1999:AIAA-99-4896.
[11] Hyde E. Marquardt's mach 4.5 supercharged ejector ramjet high-performance aircraft engine project[C]//36nd AIAA/ASME/SAE/ASEE Joint Propusion Conference & Exhibit. Huntsville:AIAA, 2000.
[12] Uwe H. NASA's advanced spaced transportation hypersonic program[C]//11th AIAA/AAAF International Conference Space Planes and Hypersonics Systems and Technologies Conference. Orleans:AIAA, 2002.
[13] Steve C. Exploring the future-3rd generation and inspace research and technology[C]//Proceedings of 12th Advanced Space Propulsion Workshop. ASPW, 2001:12-19.
[14] Siebenhaar A, Bujman M J. The strutjet engine:The overlooked option for space launch[C]//31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. San Diego:AIAA, 1995.
[15] Siebenhaar A, Bulman M. Development and testing of the aerojet strutjet combustor[J]. American Institute of Aeronautics Astronautics, 1999:AIAA-99-4868
[16] Andrew K. Summary of rocketdyne engine A5 rocket based combined cycle testing[J/OL].[2019-11-01]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/99900085-10.pdf.
[17] Yungster S, Trefny C J. Analysis of a new rocket-based combined-cycle engine concept at low speed[C]//35th Joint Propulsion Conference and Exhibit cosponsored by AIAA, ASME, SAE and ASEE. Los Angeles:AIAA, 1999.
[18] Walker J F, Kamhawi H, Krivanek T M. Status of the RBCC direct-connect mixer combustor experiment[C]//Combustion, Airbreathing Propulsion Systems Hazards, and Modelling and Simulation Subcommittees Joint Meeting. Destin:NASA/TM, 2002:211555.
[19] Quinn J E. ISTAR:Projet status and ground test engine design[C]//AIAA/ASME/SAE/ASEE 39th Joint Propulsion Conference and Exhibit. Huntsville:AIAA, 2003.
[20] Lee J, Krivanek T M. Design and fabrication of the ISTAR direct-connect combustor experiment at the NASA hypersonic tunnel facility[C]//43rd Areospce Sciences Meeting and Exhibit. Reno Nevada:AIAA, 2005.
[21] Bradford J E. Concept assessment of a hydrocarbon fueled RBCC-powered military space plane[J/OL].[2019-11-01]. http://www.sei.aero/archive/SEI_JANNAF_Sentinel_2007.pdf.
[22] Dissel A F. Comparison of hthl and vthl air-breathing and rocket systems for access to space[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Fort Lauderdale:AIAA, 2004.
[23] Bradford J E. Automated hypersonic launch vehicle design using modelcenter[J/OL].[2019-11-01]. https://arc.aiaa.org/doi/pdf/10.2514/6.1999-4896.
[24] Nelson D. Abortability metrics:Quantifying intact abort mode availability for reusable launch vehicles[C]//Space 2006. San Jose:AIAA, 2006.
[25] Orloff B S. A comparative analysis of singe-state-to-orbit, rocket and air-breathing vehicles[J/OL].[2019-11-01]. https://www.researchgate.net/publication/235050965_A_Comparative_Analysis_of_Single-Stage-To-Orbit_Rocket_and_Air-Breathing_Vehicles.
[26] Kotharil A P. A reusable, rocket and airbreathing combined cycle hypersonic vehicle design for access-tospace[C]//AIAA SPACE 2010 Conference & Exposition. Anaheim:AIAA, 2010.
[27] Dahm W J A. Technology horizons a vision for air force science&technology during 2010-2030[J/OL].[2019-11-01]. https://www.researchgate.net/publication/302305-033_Technology_Horizons_A_Vision_for_Air_Force_Science_Technology_During_2010-2030.
[28] National Research Council of the National Academies. NASA space technology roadmaps and priorities:Restoring NASA's technological edge and paving the way for a new era in space[R]. Washington, DC:The National Academies Press, 2012.
[29] Taguchi H, Maitat M, Yatsuyanagij N. Airbreather/rocket combined propulsion system research for japanese SST0 spaceplane[C]//9th International Space Planes & Hypersonic Systems & Technologies Conference. Norfolk:AIAA, 1999.
[30] Yamanaka T, Ohkoshi H. Airbreatherirocket combined cycle(ARCC) engine for spaceplanes[C]//9th International Space Planes and Hypersonic Systems and Technologies Conference. Norfolk:AIAA, 1999.
[31] Tomioka S, Kudo K. Auxiliary injection for combustion augmentation of G/GPlume in a RBCC combustor[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Tucson:AIAA, 2005.
[32] Kouchi T, Kobayashi K. Performance of a RBCC combustor operating in ramjet mode[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Sacramento:AIAA, 2006.
[33] Hiraiwa T, Tomioka S. Status report of jaxa combinedcycle engine research program in 2008[J/OL].[2019-11-01]. https://www.researchgate.net/publication/289815635_Status_report_of_JAXA_combined-cycle_engine_research_program_in_2008.
[34] Tomioka S, Takegoshi M. Performance of a rocket-ramjet combined-cycle engine model in ejector mode operation[C]//15th AIAA International Space Planes and Hypersonic and Technologies Conference. Dayton:AIAA, 2008.
[35] Tomioka S, Kato K. Performance of a rocket-ramjet combined-cycle engine model under ramjet-mode operations[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Atlanta:AIAA, 2012.
[36] Takegoshi M, Tomioka S. Mach 8 flight condition tests of rocket-ramjet combined-cycle engine model[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. San Jose:AIAA, 2013.
[37] Ueda S, Kodera M, Takegoshi M, et al. Status of jaxa combined-cycle engine research for future space transportation vehicle[C]//65th International Astronautical Congress. Toronto:IAC, 2014.
[38] 吕翔, 刘佩进, 何国强. RBCC发动机性能分析方法研究[J]. 固体火箭技术, 2007, 30(2):120-123.
[39] 王亚军, 李江, 何国强, 等. 基于放热分布的RBCC热力喉道研究[J]. 推进技术, 2016, 37(4):662-668.
[40] 刘洋, 何国强, 刘佩进, 等. 一次火箭流量对RBCC性能影响的数值和实验研究[J]. 固体火箭技术, 2008, 31(5):439-444.
[41] 徐朝启, 何国强, 秦飞, 等. 基于气化煤油喷注的RBCC燃烧室亚燃模态燃烧组织研究[J]. 推进技术, 2014, 35(4):507-513.
[42] He G Q, Shi L, Qin F, et al. Progress of rocket based combined cycle in northwestern polytechnical university[C]//65th International Astronautical Congress. Toronto:IAC, 2014.
[43] 韦宝禧, 凌文辉, 冮强, 等. TRRE发动机关键技术分析及推进性能探索研究[J]. 推进技术, 2017, 38(2):298-305.
[44] Luo C Q, Wei B X, Luo F T, et al. Design and experimental investigation of rbcc engine operating from mach 2.0 to 6.0[C]//65th International Astronautical Congress. Toronto:IAC, 2014.
[45] John E. Bradford SCCREAM (simulated combined-cycle rocket engine analysis module):A conceptual RBCC engine design tool[J]. American Institute of Aeronautics Astronautics, 1997:AIAA 97-2760.
[46] Bomar R B. Reynolds-averaged navier-stokes analysis of the flow through a model rocket-based combined cycle engine with an independently-fueled ramjet stream[D]. North Carolina:North Carolina State University, 2003.
[47] 南向军. 宽马赫数二维曲面压缩高超声速进气道设计[J]. 火箭推进, 2015, 41(1):43-49.
[48] Traci R M, Farr J L, Laganelli T. A thermal management systems model for the NASA GTX RBCC concept[R]. Cleveland:NASA, 2002.
文章导航

/