专题:锂资源开发与可持续利用

盐湖卤水提锂技术及产业化发展

  • 丁涛 ,
  • 郑绵平 ,
  • 张雪飞 ,
  • 伍倩 ,
  • 张翔禹
展开
  • 1. 中国矿业大学(北京)地球科学与测绘工程学院, 北京 100083;
    2. 中国地质科学院地质矿产资源研究所, 自然资源部盐湖资源与环境重点实验室, 北京 100037
丁涛,博士研究生,研究方向为盐类学、锂资源分离及回收,电子信箱:dtcumtb@163.com

收稿日期: 2020-05-20

  修回日期: 2020-07-21

  网络出版日期: 2020-08-14

基金资助

国家自然科学基金重大研究计划项目(91962219);中国地质局地质调查项目(DD20160054);北京地之光新能源技术研究院有限公司科研经费资助项目

Development of lithium extraction technology and industrialization in brines of salt lake

  • DING Tao ,
  • ZHENG Mianping ,
  • ZHANG Xuefei ,
  • WU Qian ,
  • ZHANG Xiangyu
Expand
  • 1. College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China;
    2. MNR Key Laboratory of Saline Lake Resources and Environments, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

Received date: 2020-05-20

  Revised date: 2020-07-21

  Online published: 2020-08-14

摘要

据美国地质调查局2020年最新统计,已查明的世界锂资源量为8000万t,其中59%锂资源分布在盐湖中,寻找不同类型盐湖的提锂技术亟待解决。根据盐湖卤水中锂和其他伴生离子赋存特征,综述了沉淀法、膜法、萃取法、盐梯度太阳池法、吸附法等盐湖提锂技术发展现状,总结了锂资源生产流程,探讨了各种方法对不同镁锂比盐湖的适应性及优势。研究发现,盐湖提锂不能按照单一方法进行,要根据不同盐湖赋存类型进行提锂工艺的选择。沉淀法已经在低镁锂比盐湖中经过工业化生产验证;吸附法是目前在高镁锂比盐湖中综合效果最为理想的提锂技术,其吸附容量高、一步直接提锂、循环性能高、稳定性强;天然矿物改性吸附法是未来盐湖提锂产业化应重点关注的方向。

本文引用格式

丁涛 , 郑绵平 , 张雪飞 , 伍倩 , 张翔禹 . 盐湖卤水提锂技术及产业化发展[J]. 科技导报, 2020 , 38(15) : 16 -23 . DOI: 10.3981/j.issn.1000-7857.2020.15.002

Abstract

According to the latest statistics from the United States Geological Survey in 2020, the world has identified 80 million tons of lithium resources, of which 59% are distributed in salt lakes. This article reviews the development status of lithium extraction technology in salt lakes, and summarizes production processes of lithium resources. The adaptability and advantages of various extraction methods are explored with respect to different of magnesium to lithium ratios in salt lakes. It is found that lithium extraction in salt lakes cannot be carried out using a single method and selection of lithium extraction process should be based on different types of salt lakes. The precipitation method in low magnesium to lithium ratio salt lakes has been proven by industrial production while in high magnesium to lithium ratio salt lakes adsorption method is currently the most ideal extraction technology in terms of comprehensive effects, including high adsorption capacity, one-step direct extraction of lithium, high cycle performance and strong stability. Of all these methods, the natural mineral modified adsorption method should be the focus of future industrialization of lithium lake salt extraction.

参考文献

[1] 王登红, 郑绵平, 王成辉, 等. 大宗急缺矿产和战略性新兴产业矿产调查工程进展与主要成果[J]. 中国地质调查, 2019, 6(6):1-11.
[2] Swain B. Recovery and recycling of lithium:A review[J]. Separation and Purification Technology, 2016, 172:388-403.
[3] Zheng M, Deng T, Oren A. Introduction to salt lake sciences[M]. Beijing:Science Press, 2017.
[4] Zheng M, Liu X. Hydrochemistry of Salt Lakes of the Qinghai-Tibet Plateau, China[J]. Aquatic Geochemistry, 2009, 15(1-2):293-320.
[5] 郑绵平, 邓天龙, 阿哈龙·奥伦. 盐湖科学概论[M]. 北京:科学出版社, 2017.
[6] 郑绵平, 刘喜方. 青藏高原盐湖水化学及其矿物组合特征[J]. 地质学报, 2010, 84(11):1585-1600.
[7] 郑绵平, 向军, 魏新俊, 等. 青藏高原盐湖[M]. 北京:北京科学技术出版社, 1989.
[8] 郑绵平, 张永生, 刘喜方, 等. 中国盐湖科学技术研究的若干进展与展望[J]. 地质学报, 2016, 90(9):2123-2165.
[9] 郑绵平. 论中国盐湖[J]. 矿床地质, 2001, 20(2):181-189.
[10] 郑绵平. 青藏高原盐湖资源研究的新进展[J]. 地球学报, 2001, 22(2):97-102.
[11] 张雪飞, 郑绵平. 青藏高原盐类矿物研究进展[J]. 科技导报, 2017, 35(12):72-76.
[12] Jewell S, Kimball S M. Mineral commodity summaries 2019[R]. Reston:U.S. Geological Survey, 2019.
[13] 赵旭, 张琦, 武海虹, 等. 盐湖卤水提锂[J]. 化学进展, 2017, 29(7):796-808.
[14] 刘东帆, 孙淑英, 于建国. 盐湖卤水提锂技术研究与发展[J]. 化工学报, 2018, 69(1):141-155.
[15] 苏慧, 朱兆武, 王丽娜, 等. 从盐湖卤水中提取与回收锂的技术进展及展望[J]. 材料导报, 2019, 33(13):2119-2126.
[16] Boryta D A, Kullberg T F, Thurston A M. Production of lithium compounds directly from lithium containing brines:US7390466[P]. 2008-06-24.
[17] Hamzaoui A H, M'nif A, Hammi H, et al. Contribution to the lithium recovery from brine[J]. Desalination, 2003, 158:221-224.
[18] An J W, Kang D J, Tran K T, et al. Recovery of lithium from Uyuni salar brine[J]. Hydrometallurgy, 2012, 117/118(4):64-70.
[19] 陆增, 胡适文, 袁建军. 从高镁锂比盐湖水中提取碳酸锂的方法:CN1398785[P]. 2003-02-26.
[20] 魏新俊, 王永浩, 保守君. 自卤水中同时沉淀硼锂的方法:CN1249272[P]. 2000-04-05.
[21] 钟辉, 杨建元, 张芃凡. 高镁锂比盐湖卤水中制取碳酸锂的方法:CN1335262[P]. 2002-02-13.
[22] 钟辉, 许惠. 一种硫酸镁亚型盐湖卤水镁锂分离方法:CN1454843[P]. 2003-11-12.
[23] 黄浩. 青海西台吉乃尔盐湖酸化老卤镁锂分离的技术研究[D]. 成都理工大学, 2009.
[24] 郑绵平, 郭珍旭, 张永生, 等. 从碳酸盐型卤水中提取锂盐方法:中国CN1270927[P]. 2000-10-25.
[25] 郑绵平. 利用太阳池从碳酸盐型卤水中结晶析出碳酸锂的方法:CN02129355[P]. 2003-02-26.
[26] 余疆江, 郑绵平, 唐力君, 等. 碳酸盐型卤水实验室模拟提锂和太阳池提锂的对比[J]. 化工进展, 2013, 32(6):1248-1252, 1260.
[27] 郑绵平, 刘喜方. 青藏高原盐湖水化学及其矿物组合特征[J]. 地质学报, 2010, 84(11):1585-1600.
[28] 乜贞, 卜令忠, 郑绵平. 中国盐湖锂资源的产业化现状——以西台吉乃尔盐湖和扎布耶盐湖为例[J]. 地球学报, 2010, 31(1):95-101.
[29] Shu Y S, Li J C, Xiao Y N. Separation of magnesium and lithium from brine using a Desal nanofiltration membrane.[J]. Journal of Water Process Engineering, 2015, 7:210-217.
[30] Wen X, Ma P, Zhu C, et al. Preliminary study on recovering lithium chloride from lithium-containing waters by nanofiltration[J]. Separation and Purification Technology, 2006, 49(3):230-236.
[31] 康为清, 时历杰, 赵有璟, 等. 纳滤法用于盐湖卤水镁锂分离的初步实验[J]. 无机盐工业, 2014, 46(12):22-24.
[32] 计超, 张杰, 张志君, 等. DK纳滤膜对高镁锂比卤水的分离性能研究[J]. 膜科学与技术, 2014, 34(3):79-85.
[33] 成琪, 关云山. 高镁锂比卤水的纳滤膜分离性能研究[J]. 无机盐工业, 2019, 51(2):35-39.
[34] 肖小玲, 戴志锋, 祝增虎, 等. 吸附法盐湖卤水提锂的研究进展[J]. 盐湖研究, 2005, 13(2):66-69.
[35] Bruggen B V D, Koninckx A, Vandecasteele C. Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration[J]. Water Research, 2004, 38(5):1347-1353.
[36] Jiang C, Wang Y, Wang Q, et al. Production of lithium hydroxide from lake brines through electro-electrodialysis with bipolar membranes (EEDBM)[J]. Industrial & Engineering Chemistry Research, 2014, 53(14):6103-6112.
[37] 马培华, 邓小川, 温现民. 从盐湖卤水中分离镁和浓缩锂的方法:CN1626443A[P]. 2005-06-15.
[38] Hoshino T. Development of technology for recovering lithium from seawater by electrodialysis using ionic liquid membrane[J]. Fusion Engineering and Design, 2013, 88(11):2956-2959.
[39] Seeley F G, Baldwin W H. Extraction of lithium from neutral salt solutions with fluorinated β -diketones[J]. Journal of Inorganic & Nuclear Chemistry, 1976, 38(5):1049-1052.
[40] Nelli J R, Arthur T E. Recovery of lithium form bitterns:US 3537813[P]. 1970-06-26.
[41] Zhou Z, Qin W, Chu Y, et al. Elucidation of the structures of tributyl phosphate/Li complexes in the presence of FeCl 3 via UV-visible, Raman and IR spectroscopy and the method of continuous variation[J]. Chemical Engineering Science, 2013, 101(20):577-585.
[42] Xiang W, Liang S, Zhou Z. Lithium recovery from salt lake brine by counter-current extraction using tributyl phosphate/FeCl3 in methyl isobutyl ketone[J]. Hydrometallurgy, 2017, 171:27-32.
[43] Zhou Z, Liang S, Qin W, et al. Extraction equilibria of lithium with tributyl phosphate, diisobutyl ketone, acetophenone, methyl isobutyl ketone, and 2-heptanone in kerosene and FeCl 3[J]. Industrial & Engineering Chemistry Research, 2013, 52(23):7912-7917.
文章导航

/