专题:锂资源开发与可持续利用

青藏高原南部地热型锂资源

  • 王晨光 ,
  • 郑绵平 ,
  • 张雪飞 ,
  • 叶传永 ,
  • 伍倩 ,
  • 陈双双 ,
  • 黎明明 ,
  • 丁涛 ,
  • 杜少荣
展开
  • 1. 中国地质科学院地质矿产资源研究所, 自然资源部盐湖资源与环境重点实验室, 北京 100037;
    2. 中国矿业大学(北京)地球科学与测绘工程学院, 北京 100083;
    3. 中山大学地球科学与工程学院, 广东省地球动力作用与地质灾害重点实验室, 广州 510275
王晨光,博士,研究方向为地热成矿学、盐类矿床学、矿物学、岩石学、矿床学,电子信箱:ChenguangWangCAGS@163.com

收稿日期: 2020-04-01

  修回日期: 2020-04-13

  网络出版日期: 2020-08-14

基金资助

国家自然科学基金重大研究计划项目(91962219);中国地质局地质调查项目(DD20160054);国家重点研发计划项目(2017YFC0602802,2017YFC0602806);北京地之光新能源技术研究院有限公司科研项目

Geothermal-type lithium resources in Southern Tibetan Plateau

  • WANG Chenguang ,
  • ZHENG Mianping ,
  • ZHANG Xuefei ,
  • YE Chuanyong ,
  • WU Qian ,
  • CHEN Shuangshang ,
  • LI Mingming ,
  • DING Tao ,
  • DU Shaorong
Expand
  • 1. MNR Key Laboratory of Saline Lake Resources and Environments, Institute of Mineral Resources, Chinese Academy of Gedogical Sciences, Beijing, 100037 China;
    2. College of Geoscience and Surveying Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China;
    3. Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou 510275, China

Received date: 2020-04-01

  Revised date: 2020-04-13

  Online published: 2020-08-14

摘要

高温地热水中含有丰富的锂资源,世界各国对其中锂资源的开发利用的研究越来越多。对青藏高原丰富的地热资源中富锂地热资源进行了综述,得出其具有以下特点:(1)构造控制强烈,地热型锂资源主要分布在雅江缝合带两侧及其南部地区强烈活动的高温地热田中,受到沿近NS向正断层发育的裂谷或地堑盆地的强烈控制;(2)品质好,锂含量可高达239 mg/L;Mg/Li非常低,多数富锂地热系统Mg/Li介于0.03~1.48;Li/TDS相对较高且介于0.25%~1.14%(扎布耶富锂盐湖为0.19%;玻利维亚乌尤尼盐湖为0.08%~0.31%);持续稳定排放数十年,部分达到工业品位(32.74 mg/L);伴生可以综合利用的B、Cs和Rb元素等;(3)规模大:据不完全统计,当前锂含量达到或超过19 mg/L的富锂温泉至少有19处,年排出金属锂约4281 t,折合碳酸锂25686 t,并且最新钻孔数据表明地热田深部潜力巨大;(4)属于非火山型,火山岩缺失;(5)深部来源成因,富锂地热系统的形成与印度和欧亚大陆碰撞引起的地壳深部部分熔融密切相关,深部熔融岩浆为富锂地热系统提供了稳定的热源,富锂的母地热流体沿着青藏高原南部广泛发育的断裂带上涌至地表形成高温富锂热泉。由此,认为青藏高原南部广泛发育的高温富锂地热资源是一种非常有价值、值得开发利用的地热型锂资源,随着地热水中锂提取技术的不断提升,青藏高原南部地热型锂资源有望成为一种可有效开发利用的锂矿床新类型——地热型锂矿床。

本文引用格式

王晨光 , 郑绵平 , 张雪飞 , 叶传永 , 伍倩 , 陈双双 , 黎明明 , 丁涛 , 杜少荣 . 青藏高原南部地热型锂资源[J]. 科技导报, 2020 , 38(15) : 24 -36 . DOI: 10.3981/j.issn.1000-7857.2020.15.003

Abstract

The high-temperature geothermal water contains abundant lithium resources, and the development and the utilization of the geothermal-type lithium resources are increasingly paid attention around the world. This paper reviews the lithium-rich geothermal resources among the geothermal resources on the Qinghai-Tibet Plateau, and it is concluded that these resources have the following characteristics:(1) strong structural control:the lithium-rich geothermal spots in Southern Tibetan Plateau are often found in the intensely active high-temperature geothermal fields and are distributed on both sides of the Yarlung Zangbo suture zone and its southern part, strongly controlled by north-south trending rifts or grabens formed by E-W extension; (2) good quality:the lithium concentration is up to 239 mg/L; the Mg/Li ratio is extremely low and ranges from 0.03 to 1.48 for most of the lithium-rich geothermal fluid; the Li/TDS value is relatively high and ranges from 0.25%-1.14% (Zhabuye lithium-rich salt lake:0.19%; Salar de Uyuni (Bolivia):0.08-0.31%); the continuous discharge is stable at least for several decades, in some parts reaches the industrial grades (32.74 mg/L:according to the industrial grades of Salt lake brine), and in addition, the elements such as B, Cs, and Rb are rich and can be comprehensively utilized; (3) large scale:according to incomplete statistics, there are at least 16 lithium-rich hot springs with lithium concentration of 19 mg/L or more, and the total discharge of lithium metal is about 4281 tons every year, equivalent to 25686 tons of lithium carbonate, moreover, drilling data show that the depth is still very promising; (4) lack of volcanism (non-volcanic geothermal system); (5) deep origin:the formation of lithium-rich geothermal resources are closely related to the deep crust partially melting caused by the collision of the Indo-Asia continent, the deep molten magma provides a stable heat source for the high-temperature lithium-rich geothermal field and the lithiumrich parent geothermal fluid rushes to the surface to form hot springs along the extensively developed tectonic fault zones in Southern Tibetan Plateau. Therefore, the widely developed high-temperature lithium-rich geothermal resources in the southern Qinghai-Tibet Plateau are valuable and worthy lithium resources. With the continuous advancement of the lithium extraction technologies on lithium-rich geothermal fluid, the lithium resource in Southern Tibetan Plateau is becoming a promising new type of mineral deposit-the geothermal-type lithium deposit and will be effectively exploited.

参考文献

[1] Martin G, Rentsch L, Höck M, et al. Lithium market research-Global supply, future demand and price development[J]. Energy Storage Materials, 2016, 6:171-179.
[2] Park J K. Principles and applications of lithium secondary batteries[M]. New York:Wiley, 2012.
[3] 刘丽君, 王登红, 高娟琴, 等. 国外锂矿找矿的新突破(2017~2018年)及对我国关键矿产勘查的启示[J]. 地质学报, 2019, 93(6):1479-1488.
[4] Campbell M G. Battery lithium could come from geothermal waters[J]. New Scientist, 2009, 204(2738):23-23.
[5] Tomaszewska B, Szczepaå S A. Possibilities for the efficient utilisation of spent geothermal waters[J]. Environmental Science & Pollution Research, 2014, 21(19):11409-11417.
[6] Gruber P W, Medina P A, Keoleian G A, et al. Global lithium availability-A constraint for electric vehicles?[J] Journal of Industrial Ecology, 2011, 15:760-775.
[7] Kesler S E, Gruber P W, Medina P A, et al. Global lithium resources:Relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews, 2012, 48(5):55-69.
[8] Ericksen G E, Vine J D, Ballón A R. Chemical composition and distribution of lithium-rich brines in salar de Uyuni and nearby salars in southwestern Bolivia[J]. Energy, 1978, 3(3):355-363.
[9] Munk L A, Bradley D C, Hynek S A, et al. Origin and evolution of Li-rich brines at Clayton Valley, Nevada, USA[C]//11th SGA Biennial Meeting. Antofagasta:SGA. 2011:217-219.
[10] Shcherbakov A V, Dvorov V I. Thermal waters as a source for extraction of chemicals[J]. Geothermics, 1970, 2(2):1636-1639.
[11] Tan H, Chen J, Rao W, et al. Geothermal constraints on enrichment of boron and lithium in salt lakes:An example from a river-salt lake system on the northern slope of the eastern Kunlun Mountains, China[J]. Journal of Asian Earth Sciences, 2012, 51(12):21-29.
[12] Yu J Q, Gao C L, Cheng A Y, et al. Geomorphic, hydroclimatic and hydrothermal controls on the formation of lithium brine deposits in the Qaidam Basin, northern Tibetan Plateau, China[J]. Ore Geology Reviews, 2013, 50(50):171-183.
[13] 雒洋冰, 郑绵平, 任雅琼. 青藏高原特种盐湖与深部火山-地热水的相关性[J]. 科技导报, 2017, 35(12):44-48.
[14] 郑绵平, 刘文高, 向军, 等. 论西藏的盐湖[J]. 地质学报, 1983, 57(2):184-194.
[15] 郑绵平, 向军, 魏新俊, 等. 青藏高原盐湖[M]. 北京:北京科学技术出版社, 1989.
[16] 郑绵平, 郑元, 刘杰. 青藏高原盐湖及地热矿床的新发现[J]. 中国地质科学院院报, 1990(1):151.
[17] Cetiner Z S, Özgür D, Özdilek G, et al. Toward utilising geothermal waters for cleaner and sustainable production:Potential of Li recovery from geothermal brines in Turkey[J]. International Journal of Global Warming, 2015, 7(4):439.
[18] Hano T, Matsumoto M, Ohtake T. Recovery of lithium from geothermal water by solvent extraction technique[J]. Solvent Extraction & Ion Exchange, 1992, 10:195-206.
[19] Jeongeon P, Hideki S, Syouhei N, et al. Lithium recovery from geothermal water by combined adsorption methods[J]. Solvent Extraction & Ion Exchange, 2012, 30:398-404.
[20] Krotscheck E, Smith R A. Separation and recovery of lithium from geothermal water by sequential adsorption process with l-MnO2 and TiO2[J]. Ion Exchange Letters, 2012, 32:2219-2233.
[21] Yanagase K, Yoshinaga T, Kawano K, et al. The recovery of lithium from geothermal water in the Hatchobaru area of Kyushu, Japan[J]. Bulletin of The Chemical Society of Japan, 1983, 56:2490-2498.
[22] 郑绵平, 刘文高. 西藏发现富锂镁硼酸盐矿床[J]. 地质论评, 1982, 28(3):263-266.
[23] Guo Q, Wang Y, Liu W. Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet, China[J]. Journal of Volcanology & Geothermal Research, 2009, 180(1):9-20.
[24] 郑绵平, 刘文高. 新的锂矿物——扎布耶石[J]. 矿物学报, 1987, 7(3):221-226.
[25] 郑绵平. 水热成矿新类型[M]. 北京:地质出版社, 1995.
[26] Guo Q, Wang Y, Liu W. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China[J]. Journal of Volcanology & Geothermal Research, 2007, 166(3):255-268.
[27] Tan H, Su J, Xu P, et al. Enrichment mechanism of Li, B and K in the geothermal water and associated deposits from the Kawu area of the Tibetan plateau:Constraints from geochemical experimental data[J]. Applied Geochemistry, 2018, 93:60-68.
[28] Guo Q H, Wang Y X, Liu W. O, H, and Sr isotope evidences of mixing processes in two geothermal fluid reservoirs at Yangbajing, Tibet, China[J]. Environmental Earth Sciences, 2010, 59:1589-1597.
[29] Guo Q, Wang Y. Geochemistry of hot springs in the Tengchong hydrothermal areas, Southwestern China[J]. Journal of Volcanology & Geothermal Research, 2012, 215-216:61-73.
[30] Guo Q, Liu M, Li J, et al. Fluid geochemical constraints on the heat source and reservoir temperature of the Banglazhang hydrothermal system, Yunnan-Tibet Geothermal Province, China[J]. Journal of Geochemical Exploration, 2017, 172:109-119.
[31] Guo Q, Li Y, Luo L. Tungsten from typical magmatic hydrothermal systems in China and its environmental transport[J]. Science of The Total Environment, 2019, 657:1523-1534.
[32] Guo Q, Planer-Friedrich B, Liu M, et al. Magmatic fluid input explaining the geochemical anomaly of very high arsenic in some southern Tibetan geothermal waters[J]. Chemical Geology, 2019, 513:32-43.
[33] Wang C G, Zheng M P. Hydrochemical characteristics and evolution of hot fluids in the Gudui geothermal field in Comei County, Himalayas[J]. Geothermics, 2019, 81:243-258.
[34] Zheng W, Tan H, Zhang Y, et al. Boron geochemistry from some typical Tibetan hydrothermal systems:Origin and isotopic fractionation[J]. Applied Geochemistry, 2015, 63:436-445.
[35] 多吉. 典型高温地热系统——羊八井热田基本特征[J]. 中国工程科学, 2003, 5(1):42-47.
[36] 李建康, 刘喜方, 王登红. 中国锂矿成矿规律概要[J]. 地质学报, 2014, 88(12):2269-2283.
[37] 佟伟, 廖志杰. 西藏温泉志[M]. 北京:科学出版社, 2000.
[38] 佟伟, 章铭陶, 张知非, 等. 西藏地热[M]. 北京:科学出版社, 1981.
[39] 张知非, 沈敏子, 赵凤三. 西藏古堆高温水热系统的地下状况[M]//地热专辑(第二辑). 北京:地质出版社, 1989:134-140.
[40] 郑绵平, 刘喜方. 青藏高原盐湖水化学及其矿物组合特征[J]. 地质学报, 2010, 84(11):1585-1600.
[41] 郑淑蕙, 张知非, 倪葆龄, 等. 西藏地热水的氢氧稳定同位素研究[J]. 北京大学学报(自然科学版), 1982(1):99-106.
[42] Morozov N P. Geochemistry of the alkali metals in rivers[J]. Geokhimiya, 1969, 6(3):729-739.
[43] 王思琪. 西藏古堆高温地热系统水文地球化学过程与形成机理[D]. 北京:中国地质大学(北京), 2017.
[44] 刘昭, 陈康, 男达瓦. 西藏古堆地热田地下热水水化学特征[J]. 地质论评, 2017(Suppl 1):353-354.
[45] Grimaud D, Huang S, Michard G, et al. Chemical study of geothermal waters of Central Tibet (China)[J]. Geothermics, 1985, 14(1):35-48.
[46] 李振清. 青藏高原碰撞造山过程中的现代热水活动[D]. 北京:中国地质科学院, 2002.
[47] Evans K R. Lithium-Chapter 10[M]//Gunn G. 2014-Critical metals handbook. New Jersey:Wiley-Blackwell, 2014.
[48] Munk L A, Hynek S A, Bradley D, et al. Lithium brines:A global perspective[J]. Review Economic Geology, 2016, 18:339-365.
[49] Bradley D, Munk L, Jochens H, et al. A preliminary deposit model for lithium brines[R]. Reston, Virginia:U.S. Geological Survey, 2013.
[50] Brothers D S, Driscoll N W, Kent G M, et al. Tectonic evolution of the Salton Sea inferred from seismic reflection data[J]. Nature Geoscience, 2009, 2(8):581-584.
[51] Karakas O, Dufek J, Mangan M T, et al. Thermal and petrologic constraints on lower crustal melt accumulation under the Salton Sea Geothermal Field[J]. Earth and Planetary Science Letters, 2017, 467:10-17.
[52] Lachenbruch A H, Sass J, Galanis S. Heat flow in southernmost California and the origin of the Salton Trough[J]. Journal of Geophysical Research-Solid Earth, 1985, 90:6709-6736.
[53] Schmitt A K, Hulen J B. Buried rhyolites within the active, high-temperature Salton Sea geothermal system[J]. Journal of Volcanology and Geothermal Research, 2008, 178:708-718.
[54] Elderfield H, Greaves M J. Strontium isotope geochemistry of icelandic geothermal systems and implications for sea water chemistry[J]. Geochimica et Cosmochimica Acta, 1981, 45:2201-2212.
[55] Jones B, Renaut R W, Torfason H, et al. The geological history of Geysir, Iceland:A tephrochronological approach to the dating of sinter[J]. Journal of the Geological Society, 2007, 164(6):1241-1252.
[56] Geilert S, Vroon P Z, Keller N S, et al. Silicon isotope fractionation during silica precipitation from hot-spring waters:Evidence from the Geysir geothermal field, Iceland[J]. Geochimica et Cosmochimica Acta, 2015, 164:403-427.
[57] Chowdhury A N, Handa B K, Das A K. High lithium, rubidium and cesium contents of thermal spring water, spring sediments and borax deposits in Puga Valley, Kashmir, India[J]. Geochemical Journal, 1974, 8:61-65.
[58] Fuge R. On the behaviourof fluorine and chlorine during magmatic differentiation[J]. Contributions to Mineralogy & Petrology, 1977, 61(3):245-249.
[59] Webster E A, Holloway J R. The partitioning of REE's, Rb and Cp between silicic meh and a CI fluid[OL]. EOS, 1980, 61:1152.
[60] Brown L D, Zhao W, Nelson K D, et al. Bright spots, structure, and magmatism in southern tibet from indepth seismic reflection profiling[J]. Science, 1996, 274:1688-1690.
[61] Chen L, Booker J R, Jones A G, et al. Electrically conductive crust in Southern Tibet from INDEPTH magnetotelluric surveying[J]. Science, 1996, 274:1694-1696.
[62] Kind R, Ni J, Zhao W, et al. Evidence from earthquake data for a partially molten crustal layer in Southern Tibet[J]. Science, 1996, 274:1692-1694.
[63] Makovsky Y, Klemperer S L, Ratschbacher L, et al. INDEPTH wide-angle reflection observation of P-wave-toS-wave conversion from crustal bright spots in Tibet[J]. Science, 1996, 274:1690-1691.
[64] Nelson K D, Zhao W, Brown L D, et al. Partially molten middle crust beneath southern Tibet:Synthesis of project INDEPTH results[J]. Science, 1996, 274:1684-1688.
[65] Wei W B, Jin S, Ye G F, et al. Conductivity structure and rheological property of lithosphere in Southern Tibet inferred from super-broadband magmetotulleric sounding[J]. Science in China (Earth Sciences), 2010, 53:189-202.
[66] 谭捍东, 魏文博, Martyn U, 等. 西藏高原南部雅鲁藏布江缝合带地区地壳电性结构研究[J]. 地球物理学报, 2004, 47(4):685-690.
[67] Davis J R, Friedman I, Gleason J D. Origin of the lithium-rich brine, Clayton Valley, Nevada[J]. U.S. Geological Survey Bulletin, 1986, 1622:131-138.
[68] Zhang L, Chan L H, Gieskes J M. Lithium isotope geochemistry of pore waters from Ocean Drilling Program Sites 918/919, Irminger Basin[J]. Geochimica et Cosmochimica Acta, 1998, 62(14):2437-2450.
[69] Wang C G, Zheng M P, Zhang X F, et al. O, H, and Sr isotope evidence for origin and mixing processes of the Gudui geothermal system, Himalayas, China[J]. Geoscience Frontiers, 2019, doi:10.1016/j.gsf.2019.09.013.
[70] Francheteau J, Jaupart C, Shen X J, et al. High heat flow in southern Tibet[J]. Nature, 1984, 307(5946):32-36.
[71] Tan H, Zhang Y, Zhang W, Kong N, Zhang Q, Huang J. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes[J]. Applied Geochemistry, 2014, 51:23-32.
[72] Liu M L, Guo Q H, Wu G, et al. Boron geochemistry of the geothermal waters from two typical hydrothermal systems in Southern Tibet (China):Daggyai and Quzhuomu[J]. Geothermics, 2019, 82:190-202.
[73] Chagnes A, Światowska J. Lithium Process Chemistry[M]. Amsterdam:Elsevier, 2015.
[74] Berthold C E. Magmamax No. 1 Geothermal minerals recovery pilot plant, engineering design[R]. Reho, Nevada:Hazen Research, Reno Metallurgy Research Center, 1978.
[75] Farley E P, Watson E L, Macdonald D D, et al. Recovery of heavy metals from high salinity geothermal brine[R]. Nevada:SRI International, 1980.
[76] Schultze L E, Bauer D J. Recovering lithium chloride from a geothermal brine[R]. Reston, Virginia:United States Bureau of Mines, Fort Meade in Maryland, 1984.
[77] Małgorzata W, Gracja F, Iwona O, et al. Investigations of the possibility of lithium acquisition from geothermal water using natural and synthetic zeolites applying poly (acrylic acid)[J]. Journal of Cleaner Production, 2018, 195:821-830.
[78] Ziya S C, Özgür D, Göksel Ö, et al. Toward utilizing geothermal waters for cleaner and sustainable production:Potential of Li recovery from geothermal brines in Turkey[J]. International Journal of Global Warming, 2015, 7(4):439.
[79] Sun S, Yi X P, Li M L, et al. Green recovery of lithium from geothermal water based on a novel lithium iron phosphate electrochemical technique[J]. Journal of Cleaner Production, 2020, 247:119178.
[80] Wang H S, Cui J, Li M L, et al. Selective recovery of lithium from geothermal water by EGDE cross-linked spherical CTS/LMO[J]. Chemical Engineering Journal, 2020, 389:124410.
[81] Pauwels H, Brach M, Fouillac C. Lithium recovery from geothermal waters of Cesano (Italy) and Cronembourg (Alsace, France)[C]//12th New Zealand Geothermal Workshop. Orléans:Bureau de Recherches Géologiques et Minières, 1990:117-123.
[82] Nishihama S, Onishi K, Yoshizuka K. Selective recovery process of lithium from seawater using integrated ion exchange methods[J]. Solvent Extraction and Ion Exchange, 2011, 29(3):421-431.
[83] Miyai Y, Ooi K, Katoh S. Recovery of lithium from seawater using a new type of ion-sieve adsorbent based on MgMn2O4[J]. Separation Science and Technology, 1998, 23(1-3):179-191.
[84] Chung K S, Lee J C, Kim W K, et al. Inorganic adsorbent containing polymeric membrane reservoir for the recovery of lithium from seawater[J]. Journal of Membrane Science, 2008, 325(2):503-508.
[85] Flexer V, Baspineiro C F, Galli C L. Lithium recovery from brines:a vital raw material for green energies with a potential environmental impact in its mining and processing[J]. Science Total Environment, 2018, 639:1188-1204.
[86] Song J F, Nghiem L D, Li X M, et al. Lithium extraction from Chinese salt-lake brines:Opportunities, challenges, and future outlook[J]. Environmental Science-Water Research & Technology, 2017, 3:593-597.
[87] Zheng M P. Preliminary discussion of low-salinity hydrothermal fluid mineralization[J]. Chinese Science Bulletin, 1999, 44(Suppl 2):141-143.
文章导航

/