[1] Eckhardt C L, van Velzen A S, Peters M, et al. Factor VIII gene (F8) mutation and risk of inhibitor development in nonsevere hemophilia A[J]. Blood, 2013, 122(11):1954-1962.
[2] Lindvall K, von Mackensen S, Elmstahl S, et al. Increased burden on caregivers of having a child with haemophilia complicated by inhibitors[J]. Pediatr Blood Cancer, 2014, 61(4):706-711.
[3] Friedmann T, Robli R. Gene therapy for human genetic disease[J]. Science, 1972, 178(4061):648-649.
[4] Mansilla-Soto J, Riviere I, Boulad F, et al. Cell and gene therapy for the beta-Thalassemias:Advances and prospects[J]. Human Gene Therapy, 2016, 27(4):295-304.
[5] Naldini L. Gene therapy returns to centre stage[J]. Nature, 2015, 526(7573):351-360.
[6] Dunbar C E, High K A, Joung J K, et al. Gene therapy comes of age[J]. Science, 2018, 359(6372):1-10.
[7] Jenks S. Gene therapy death "everyone has to share in the guilt"[J]. Journal of the National Cancer Institute, 2000, 92(2):98-100.
[8] Rao V K, Kapp D, Schroth M. Gene therapy for spinal muscular atrophy:An emerging treatment option for a devastating disease[J]. Journal of Managed Care Specialty Pharmacy, 2018, 24(12):3-16.
[9] Brody H. Gene therapy[J]. Nature, 2018, 564(7735):5.
[10] Verma I M, Somia N. Gene therapy-Promises, problems and prospects[J]. Nature, 1997, 389(6648):239-242.
[11] Riviere I, Brose K, Mulligan R C. Effects of retroviral vector design on expression of human adenosine deaminase in murine bone marrow transplant recipients engrafted with genetically modified cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(15):6733-6737.
[12] Halene S, Wang L, Cooper R M, et al. Improved expression in hematopoietic and lymphoid cells in mice after transplantation of bone marrow transduced with a modified retroviral vector[J]. Blood, 1999, 94(10):3349-3357.
[13] Naldini L. Ex vivo gene transfer and correction for cellbased therapies[J]. Nature Reviews Genetics, 2011, 12(5):301-315.
[14] Wu C, Dunbar C E. Stem cell gene therapy:The risks of insertional mutagenesis and approaches to minimize genotoxicity[J]. Frontiers of Medicine, 2011, 5(4):356-371.
[15] Montini E, Cesana D, Schmidt M, et al. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy[J]. Journal of Clinical Investigation, 2009, 119(4):964-975.
[16] May C, Rivella S, Callegari J, et al. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin[J]. Nature, 2000, 406(6791):82-86.
[17] Kosicki M, Tomberg K, Bradley A. Repair of doublestrand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements[J]. Nature Biotechnology, 2018, 36(8):765-771.
[18] Taruno A, Kashio M, Sun H, et al. Adeno-associated virus-mediated gene transfer into taste cells in vivo[J]. Chemical Senses, 2017, 42(1):69-78.
[19] Arruda V R, Samelson-Jones B J. Obstacles and future of gene therapy for hemophilia[J]. Expert Opinion on Orphan Drugs, 2015, 3(9):997-1010.
[20] Srivastava A. In vivo tissue-tropism of adeno-associated viral vectors[J]. Current Opinion in Virology, 2016, 21:75-80.
[21] Mendell J R, Al-Zaidy S, Shell R, et al. Single-dose gene-replacement therapy for spinal muscular atrophy[J]. The New England Journal of Medicine, 2017, 377(18):1713-1722.
[22] Batty P, Lillicrap D. Advances and challenges for hemophilia gene therapy[J]. Human Molecular Genetics, 2019, 28(R1):R95-R101.
[23] Fonfara I, Le Rhun A, Chylinski K, et al. Phylogeny of Cas9 determines functional exchangeability of dualRNA and Cas9 among orthologous type II CRISPR-Cas systems[J]. Nucleic Acids Research, 2014, 42(4):2577-2590.
[24] Fisher R K, Mattern-Schain S I, Best M D, et al. Improving the efficacy of liposome-mediated vascular gene therapy via lipid surface modifications[J]. Journal of Surgical Research, 2017, 219:136-144.
[25] Dufes C, Uchegbu I F, Schatzlein A G. Dendrimers in gene delivery[J]. Advanced Drug Delivery Reviews, 2005, 57(15):2177-2202.
[26] Kim J S. Genome editing comes of age[J]. Nature Protocols, 2016, 11(9):1573-1578.
[27] Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. Journal of Bacteriology, 1987, 169(12):5429-5433.
[28] Silva G, Poirot L, Galetto R, et al. Meganucleases and other tools for targeted genome engineering:Perspectives and challenges for gene therapy[J]. Current Gene Therapy, 2011, 11(1):11-27.
[29] Urnov F D, Rebar E J, Holmes M C, et al. Genome editing with engineered zinc finger nucleases[J]. Nature Reviews Genetics, 2010, 11(9):636-646.
[30] Lam K N, van Bakel H, Cote A G, et al. Sequence specificity is obtained from the majority of modular C2H2 zinc-finger arrays[J]. Nucleic Acids Research, 2011, 39(11):4680-4690.
[31] Ul Ain Q, Chung J Y, Kim Y H. Current and future delivery systems for engineered nucleases:ZFN, TALEN and RGEN[J]. Journal of Controlled Release, 2015, 205:120-127.
[32] Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors[J]. Science, 2009, 326(5959):1509-1512.
[33] Moscou M J, Bogdanove A J. A simple cipher governs DNA recognition by TAL effectors[J]. Science, 2009, 326(5959):1501.
[34] Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39):2579-2586.
[35] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821.
[36] Cho S W, Kim S, Kim Y, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases[J]. Genome Research, 2014, 24(1):132-141.
[37] Kim D, Bae S, Park J, et al. Digenome-seq:Genomewide profiling of CRISPR-Cas9 off-target effects in human cells[J]. Nature Methods, 2015, 12(3):237-243.
[38] Komor A C, Kim Y B, Packer M S, et al. Programmable editing of a target base in genomic DNA without doublestranded DNA cleavage[J]. Nature, 2016, 533(7603):420-424.
[39] Lefebvre S, Burglen L, Reboullet S, et al. Identification and characterization of a spinal muscular atrophy-determining gene[J]. Cell, 1995, 80(1):155-165.
[40] Sugarman E A, Nagan N, Zhu H, et al. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy:Clinical laboratory analysis of >72, 400 specimens[J]. European Journal of Human Genetics, 2012, 20(1):27-32.
[41] Wirth B, Karakaya M, Kye M J, et al. Twenty-five years of spinal muscular atrophy research:From phenotype to genotype to therapy, and what comes next[J]. Annual Review of Genomics and Human Genetics, 2020.
[42] Foust K D, Wang X, McGovern V L, et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN[J]. Nature Biotechnology, 2010, 28(3):271-274.
[43] Dominguez E, Marais T, Chatauret N, et al. Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice[J]. Human Molecular Genetics, 2011, 20(4):681-693.
[44] Porensky P N, Burghes A H. Antisense oligonucleotides for the treatment of spinal muscular atrophy[J]. Human Molecular Genetics, 2013, 24(5):489-498.
[45] Talbot K, Tizzano E F. The clinical landscape for SMA in a new therapeutic era[J]. Gene Therapy, 2017, 24(9):529-533.
[46] Singh N K, Singh N N, Androphy E J, et al. Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron[J]. Molecular and Cellular Biology, 2006, 26(4):1333-1346.
[47] Chung B H, Wong V, CIp P. Spinal muscular atrophy:Survival pattern and functional status[J]. Pediatrics, 2004, 114(5):548-553.
[48] Mercuri E, Darras B T, Chiriboga C A, et al. Nusinersen versus sham control in later-onset spinal muscular atrophy[J]. The New England Journal of Medicine, 2018, 378(7):625-635.
[49] Aartsma-Rus A. FDA Approval of nusinersen for spinal muscular atrophy makes 2016 the year of splice modulating oligonucleotides[J]. Nucleic Acid Therapeutics, 2017, 27(2):67-69.
[50] Meyer K, Ferraiuolo L, Schmelzer L, et al. Improving single injection CSF delivery of AAV9-mediated gene therapy for SMA:A dose-response study in mice and nonhuman primates[J]. Molecular Therapy, 2015, 23(3):477-487.
[51] Hanein S, Perrault I, Gerber S, et al. Leber congenital amaurosis:Comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis[J]. Human Mutation, 2004, 23(4):306-317.
[52] Den Hollander A I, Roepman R, Koenekoop R K, et al. Leber congenital amaurosis:Genes, proteins and disease mechanisms[J]. Progress in Retinal and Eye Research, 2008, 27(4):391-419.
[53] Allikmets R. Leber congenital amaurosis:A genetic paradigm[J]. Ophthalmic Genetics, 2004, 25(2):67-79.
[54] Den Hollander A I. Omics in Ophthalmology:Advances in genomics and precision medicine for leber congenital amaurosis and age-related macular degeneration[J]. Investigative Ophthalmology & Visual Science, 2016, 57(3):1378-1387.
[55] Astuti G D, Bertelsen M, Preising M N, et al. Comprehensive genotyping reveals RPE65 as the most frequently mutated gene in Leber congenital amaurosis in Denmark[J]. European Journal of Human Genetics, 2016, 24(7):1071-1079.
[56] Moore N A, Morral N, Ciulla T A, et al. Gene therapy for inherited retinal and optic nerve degenerations[J]. Expert Opinion on Biological Therapy, 2018, 18(1):37-49.
[57] Russell S, Bennett J, Wellman J A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy:A randomised, controlled, open-label, phase 3 trial[J]. Lancet, 2017, 390(10097):849-860.
[58] Wu B X, Moiseyev G, Chen Y, et al. Identification of RDH10, an All-trans Retinol Dehydrogenase, in Retinal Muller Cells[J]. Investigative Ophthalmology & Visual Science, 2004, 45(11):3857-3862.
[59] Bennett J, Wellman J, Marshall K A, et al. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations:A follow-on phase 1 trial[J]. Lancet, 2016, 388(10045):661-672.
[60] Bennicelli J, Wright J F, Komaromy A, et al. Reversal of blindness in animal models of leber congenital amaurosis using optimized AAV2-mediated gene transfer[J]. Molecular Therapy, 2008, 16(3):458-465.
[61] Maguire A M, Simonelli F, Pierce E A, et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis[J]. The New England Journal of Medicine, 2008, 358(21):2240-2248.
[62] Ashtari M, Cyckowski L L, Monroe J F, et al. The human visual cortex responds to gene therapy-mediated recovery of retinal function[J]. Journal of Clinical Investigation, 2011, 121(6):2160-2168.
[63] Ashtari M, Zhang H, Cook P A, et al. Plasticity of the human visual system after retinal gene therapy in patients with Leber's congenital amaurosis[J]. Science Translational Medicine, 2015, 7(296):96-110.
[64] Bainbridge J W, Smith A J, Barker S S, et al. Effect of gene therapy on visual function in Leber's congenital amaurosis[J]. The New England Journal of Medicine, 2008, 358(21):2231-2239.
[65] Maguire A M, High K A, Auricchio A, et al. Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis:A phase 1 dose-escalation trial[J]. Lancet, 2009, 374(9701):1597-1605.
[66] Mannucci P M, Tuddenham E G. The hemophilias from royal genes to gene therapy[J]. The New England Journal of Medicine, 2001, 344(23):1773-1779.
[67] Brackman H H. Hemophilia home treatment in West Germany[J]. Scand J Haematol Suppl, 1977, 31:11-15.
[68] Jones P K, Ratnoff O D. The changing prognosis of classic hemophilia (factor VIII "deficiency")[J]. Annals of Internal Medicine, 1991, 114(8):641-648.
[69] Khaliavina I N, Gileva O S, Plenkina Iu A, et al. Guidelines for dental care in hemophilia patients[J]. Stomatologiia (Mosk), 2012, 91(2):9-11.
[70] Skinner M W. WFH:Closing the global gap——achieving optimal care[J]. Haemophilia, 2012, 18(Suppl 4):1-12.
[71] Herzog R W, Hagstrom J N, Kung S H, et al. Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(11):5804-5809.
[72] Mount J D, Herzog R W, Tillson D M, et al. Sustained phenotypic correction of hemophilia B dogs with a factor IX null mutation by liver-directed gene therapy[J]. Blood, 2002, 99(8):2670-2676.
[73] Manno C S, Chew A J, Hutchison S, et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B[J]. Blood, 2003, 101(8):2963-2972.
[74] Manno C S, Pierce G F, Arruda V R, et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response[J]. Nature Medicine, 2006, 12(3):342-347.
[75] Buchlis G, Podsakoff G M, Radu A, et al. Factor IX expression in skeletal muscle of a severe hemophilia B patient 10 years after AAV-mediated gene transfer[J]. Blood, 2012, 119(13):3038-3041.
[76] High K A. Gene therapy for hemophilia:The clot thickens[J]. Human Gene Therapy, 2014, 25(11):915-922.
[77] Nathwani A C, Davidoff A M, Tuddenham G D. Advances in Gene Therapy for Hemophilia[J]. Human Gene Therapy, 2017, 28(11):1004-1012.
[78] Chang A H, Stephan M T, Sadelain M. Stem cell-derived erythroid cells mediate long-term systemic protein delivery[J]. Nature Biotechnology, 2006, 24(8):1017-1021.
[79] Rangarajan S, Walsh L, Lester W, et al. AAV5-Factor VIII Gene Transfer in Severe Hemophilia A[J]. The New England Journal of Medicine, 2017, 377(26):2519-2530.
[80] Gollomp K L, Doshi B S, Arruda V R. Gene therapy for hemophilia:Progress to date and challenges moving forward[J]. Transfusion and Apheresis Science, 2019, 58(5):602-612.
[81] Mingozzi F, High K A. Immune responses to AAV vectors:overcoming barriers to successful gene therapy[J]. Blood, 2013, 122(1):23-36.
[82] Mimuro J, Mizukami H, Shima M, et al. The prevalence of neutralizing antibodies against adeno-associated virus capsids is reduced in young Japanese individuals[J]. Journal of Medical Virology, 2014, 86(11):1990-1997.
[83] Roth C K, Puttbrese A, Ottley C. Thalassemia Syndromes in Pregnancy[J]. Nursing for Women's Health, 2016, 20(4):415-420.
[84] Rund D, Rachmilewitz E. Beta-thalassemia[J]. The New England Journal of Medicine, 2005, 353(11):1135-1146.
[85] Vichinsky E P. Changing patterns of thalassemia worldwide[J]. Annals of The New York Academy of Sciences, 2005, 1054:18-24.
[86] May C, Rivella S, Chadburn A, et al. Successful treatment of murine beta-thalassemia intermedia by transfer of the human beta-globin gene[J]. Blood, 2002, 99(6):1902-1908.
[87] Cavazzana-Calvo M, Payen E, Negre O, et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia[J]. Nature, 2010, 467(7313):318-322.
[88] Dever D P, Porteus M H. The changing landscape of gene editing in hematopoietic stem cells:A step towards Cas9 clinical translation[J]. Current Opinion in Hematology, 2017, 24(6):481-488.
[89] Thompson A A, Walters M C, Kwiatkowski J, et al. Gene Therapy in Patients with Transfusion-Dependent beta-Thalassemia[J]. The New England Journal of Medicine, 2018, 378(16):1479-1493.