“一带一路”沿线是地震、干旱、洪水等灾害的高发区域,防灾减灾需求强烈,但关于该区域的防灾减灾数据和信息服务能力相对滞后。面向防灾减灾知识服务需求,阐述了知识服务的起源和知识服务系统的主要特征,构建了以全球灾害元数据库、防灾减灾知识网络和知识服务系统门户为核心的防灾减灾知识服务框架,建立防灾减灾知识服务系统,并分析了灾害元数据标准、灾害数据产品、灾害知识应用、灾害案例共享等基础应用。重点介绍了目前防灾减灾知识服务系统在“一带一路”沿线地区的典型应用,包括孕灾环境基础数据知识服务应用、耕地干旱水平时空展示专题知识应用、蒙古国孕灾环境土地覆盖全要素数据服务知识应用、中蒙俄经济走廊主要历史灾害知识应用和中蒙俄经济走廊草地产草量知识应用。从基于知识组织的灾害数据管理、基于数据共享的灾害资源导航、数据驱动的灾害信息产品、人工智能在防灾减灾中的应用、面向应急的快速灾害制图和社交媒体灾害数据挖掘6个方面进行了知识应用展望。
Along the Belt and Road regions is a high incidence area of earthquakes, droughts, floods and other disasters. The disaster risk reduction is highly required, but the data and information service capabilities in the regions are relatively weak. For the need of the knowledge service of disaster risk reduction, this paper discusses the origin of the knowledge service and the main characteristics of the knowledge service system. A framework of the knowledge service for the disaster risk reduction is constructed, centered on the global disaster meta-database, the disaster risk reduction knowledge network and the portal of the knowledge service system. The disaster risk reduction knowledge service system (DRRKS) is established and the basic applications are analyzed, including the disaster metadata standard, the data product, the knowledge applications and the case sharing. The typical applications of the current disaster risk reduction knowledge service system in the area along the Belt and Road regions include the knowledge service application of the Belt and Road disaster environment data, the application of the thematic knowledge in the spatial-temporal display of the arable land drought level along the "Belt and Road" regions, the knowledge application of the spatial-temporal data service of the main historical disasters in the China-Mongolia-Russia Economic Corridor, the total factor data service knowledge application of the disaster-prevention environment land cover in Mongolia, and the knowledge application of the grassland yield in the China-Mongolia-Russia Economic Corridor of the Belt and Road. The future of the knowledge application may include six aspects: the disaster data management based on the knowledge organization, the disaster resource navigation based on the data sharing, the data-driven disaster information products, the artificial intelligence application in the disaster risk reduction, the emergency-oriented rapid disaster mapping and the application of social media data mining.
[1] 孔锋. 全球气候变化背景下"一带一路" 综合防灾减灾的现状、需求、愿景与政策建议[C]//第35届中国气象学会年会S6应对气候变化、低碳发展与生态文明建设. 合肥:中国气象学会, 2018:378-382.
[2] Lei Y, Cui P, Regmi A D, et al. An international program on Silk Road Disaster Risk Reduction——a Belt and Road initiative (2016-2020)[J]. Journal of Mountain Science, 2018, 15(7):1383-1396.
[3] 崔鹏, 邹强, 陈曦, 等."一带一路" 自然灾害风险与综合减灾[J]. 中国科学院院刊, 2018(33):38-43.
[4] 杨思全. 减灾救灾决策支持业务能力建设与发展[J]. 中国减灾, 2013(24):26-27.
[5] Wang J, Bu K, Yang F, et al. Disaster risk reduction knowledge service:A paradigm shift from disaster data towards knowledge services[J/OL]. Pure and Applied Geophysics. 2019, https://doi.org/10.1007/s00024-019-02229-w.
[6] 韩雪华, 王卷乐, 卜坤, 等. 基于Web文本的灾害事件信息获取进展[J]. 地球信息科学学报, 2018, 20(8):1037-1046.
[7] 王玉洁, 卜坤, 王卷乐. 基于开源Pycsw的灾害元数据管理系统设计与原型实现[J]. 科研信息化技术与应用, 2018, 9(2):60-70.
[8] 郭华东. 科学大数据驱动地学学科发展[J]. 科技导报, 2018, 36(5):1.
[9] Fayyad U, Piatetsky-Shapiro G, Smyth P. The KDD process for extracting useful knowledge from volumes of data[J]. Comunications of the ACM, 1996, 39(11):27-34.
[10] 刘佳, 李贺. 数字图书馆知识服务能力理论与实证研究[J]. 情报理论与实践, 2012, 35(9):78-82.
[11] Magiswary D, Murali R, Mariam K. Konwledge management services innovation[J]. Data Engineering and Management, 2010(7):9-15.
[12] 张晓林. 走向知识服务[M]. 成都:四川大学出版社, 2001:110-112.
[13] 戚建林. 论图书情报机构的信息服务与知识服务[J]. 河南图书馆学刊, 2003(2):1.
[14] 李晓鹏, 颜端武, 陈祖香. 国内外知识服务研究现状、趋势与主要学术观点[J]. 图书情报工作, 2010(6):107-111.
[15] 中国工程科技知识中心. 中国工程科技知识中心培训教材[M]. 北京:中国工程科技知识中心, 2015.
[16] 防灾减灾知识服务[EB/OL].[2020-03-10]. http://drr.ikcest.org.
[17] 孔锋, 吕丽莉."一带一路" 综合自然灾害风险评估及政策建议[C]//第35届中国气象学会年会S22供给侧结构性改革与气象高质量发展. 合肥:中国气象学会, 2018:6.
[18] Chan E Y, Huang Z, Lam H C Y, et al. Health vulnerability index for disaster risk reduction:Application in Belt and Road initiative (BRI) region[J]. International journal of environmental research and public health, 2019, 16(3):380.
[19] 裴艳茜, 邱海军, 胡胜, 等."一带一路" 地区滑坡灾害风险评估[J]. 干旱区地理, 2018, 41(6):1225-1240.
[20] Tomašev N, Glorot X, Rae J W, et al. A clinically applicable approach to continuous prediction of future acute kidney injury[J]. Nature, 2019(572):116-119.
[21] Janowicz K, Gao S, McKenzie G, et al. GeoAI:Spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond[J]. International Journal of Geographical Information Science, 2020, 34(4):625-636.
[22] 葛洪涛, 赵文豪, 周子文. 面向地质灾害的快速制图系统关键技术研究[J]. 地理信息世界, 2018, 130(4):117-121.
[23] Miller H J, Goodchild M F. Data-driven geography[J]. GeoJournal, 2015, 80(4):449-461.
[24] 王艳东, 李昊, 王腾, 等. 基于社交媒体的突发事件应急信息挖掘与分析[J]. 武汉大学学报(信息科学版), 2016, 41(3):9-16.