[1] Cohen J, Rind D. The effect of snow cover on the climate[J]. Journal of Climate, 1991, 4(7):689-706.
[2] Vavrus S. The role of terrestrial snow cover in the climate system[J]. Climate Dynamics, 2007, 29(1):73-88.
[3] 杨针娘, 胡鸣高. 高山冻土区水量平衡及地表径流特征[J]. 中国科学(D辑), 1996, 26(6):567-573.
[4] Lehning M, Löwe H, Ryser M, et al. Inhomogeneous precipitation distribution and snow transport in steep terrain[J]. Water Resources Research, 2008, 44(7):278-284.
[5] Schweizer J, Bruce Jamieson J, Schneebeli M. Snow avalanche formation[J]. Reviews of Geophysics, 2003, 41(4), doi:10.1029/2002RG000123.
[6] 赵娜. 来自高原的恩赐, 三江之源[J]. 青海科技, 2015(2):45-48.
[7] Fritze H, Stewart I T, Pebesma E. Shifts in western North American snowmelt runoff regimes for the recent warm decades[J]. Journal of Hydrometeorology, 2011, 12(5):989-1006.
[8] 曹丽娟, 董文杰, 张勇, 等. 未来气候变化对黄河流域水文过程的影响[J]. 气候与环境研究, 2013, 18(6):68-78.
[9] Hanesiak J M, Wang X L. Adverse-weather trends in the Canadian Arctic[J]. Journal of Climate, 2005, 18(16):3140-3156.
[10] Nishimura K, Nemoto M. Blowing snow at Mizuho station, Antarctica[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2005, 363(1832):1647-1662.
[11] Mott R, Vionnet V, Grünewald T. The seasonal snow cover dynamics:Review on wind-driven coupling processes[J]. Frontiers in Earth Science, 2018, 6:197.
[12] Schmidt R A. Vertical profiles of wind speed, snow concentration, and humidity in blowing snow[J]. BoundaryLayer Meteorology, 1982, 23(2):223-246.
[13] Mahesh A, Eager R, Campbell J R, et al. Observations of blowing snow at the South Pole[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D22):4707.
[14] Sturm M, Stuefer S. Wind-blown flux rates derived from drifts at arctic snow fences[J]. Journal of Glaciology, 2013, 59(213):21-34.
[15] Gordon M, Taylor P A. Measurements of blowing snow, Part I:Particle shape, size distribution, velocity, and number flux at Churchill, Manitoba, Canada[J]. Cold Regions Science and Technology, 2009, 55(1):63-74.
[16] Gordon M, Savelyev S, Taylor P A. Measurements of blowing snow, Part Ⅱ:Mass and number density profiles and saltation height at Franklin Bay, NWT, Canada[J]. Cold Regions Science and Technology, 2009, 55(1):75-85.
[17] Judith J, Doorschot J. Field measurements of snow-drift threshold and mass fluxes, and related mold simulations[J]. Bound-Lay Meteorol, 2004, 113:347-368.
[18] Nishimura K, Yokoyama C, Ito Y, et al. Snow particle speeds in drifting snow[J]. Journal of Geophysical Research:Atmospheres, 2014, 119(16):9901-9913.
[19] Kikuchi T. A wind tunnel study of the aerodynamic roughness associated with drifting snow[J]. Cold Regions Science and Technology, 1981, 5(2):107-118.
[20] Maeno N, Naruse R, Nishimura K, et al. Wind-tunnel experiments on blowing snow[J]. Annals of Glaciology, 1985, 6:63-67.
[21] Sugiura K, Maeno N. Wind-tunnel measurements of restitution coefficients and ejection number of snow particles in drifting snow:Determination of splash functions[J]. Boundary-layer Meteorology, 2000, 95(1):123-143.
[22] Clifton A, Lehning M. Improvement and validation of a snow saltation model using wind tunnel measurements[J]. Earth Surface Processes and Landforms, 2008, 33(14):2156-2173.
[23] Lü X H, Huang N, Tong D. Wind tunnel experiments on natural snow drift[J]. Science China Technological Sciences, 2012, 55(4):927-938.
[24] Zwaaftink C D G, Diebold M, Horender S, et al. Modelling small-scale drifting snow with a Lagrangian stochastic model based on large-eddy simulations[J]. Boundarylayer Mmeteorology, 2014, 153(1):117-139.
[25] Iversen J D. Drifting-snow similitude transport-rate and roughness modeling[J]. Journal of Glaciology, 1980, 26(94):393-403.
[26] Pomeroy J W. A process-based model of snow drifting[J]. Annals of Glaciology, 1989, 13:237-240.
[27] Gauer P. Numerical modeling of blowing and drifting snow in Alpine terrain[J]. Journal of Glaciology, 2001, 47(156):97-110.
[28] Uematsu T, Nakata T, Takeuchi K, et al. Three-dimensional numerical simulation of snowdrift[J]. Cold Regions Science and Technology, 1991, 20(1):65-73.
[29] Déry S J, Yau M K. A bulk blowing snow model[J]. Boundary-Layer Meteorology, 1999, 93(2):237-251.
[30] Bintanja R. Snowdrift suspension and atmospheric turbulence. Part I:Theoretical background and model description[J]. Boundary-Layer Meteorology, 2000, 95(3):343-368.
[31] Bintanja R. Snowdrift suspension and atmospheric turbulence. Part Ⅱ:Results of model simulations[J]. Boundary-Layer Meteorology, 2000, 95(3):369-395.
[32] Vionnet V, Martin E, Masson V, et al. Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model[J]. The Cryosphere, 2014, 8(2):395-415.
[33] Doorschot J J J, Lehning M. Equilibrium saltation:Mass fluxes, aerodynamic entrainment, and dependence on grain properties[J]. Boundary-Layer Meteorology, 2002, 104(1):111-130.
[34] Nemoto M, Nishimura K. Numerical simulation of snow saltation and suspension in a turbulent boundary layer[J]. Journal of Geophysical Research:Atmospheres, 2004, 109, doi:10.1029/2004JD004657.
[35] Huang N, Wang Z S. The formation of snow streamers in the turbulent atmosphere boundary layer[J]. Aeolian Research, 2016, 23:1-10.
[36] Déry S J, Yau M K. Simulation of blowing snow in the Canadian Arctic using a double-moment model[J]. Boundary-Layer Meteorology, 2001, 99(2):297-316.
[37] Pomeroy J W, Gray D M, Landine P G. The prairie blowing snow model:Characteristics, validation, operation[J]. Journal of Hydrology, 1993, 144(1-4):165-192.
[38] Strasser U, Bernhardt M, Weber M, et al. Is snow sublimation important in the alpine water balance?[J]. The Cryosphere, 2008, 2(1):53.
[39] Dyunin A K. Fundamentals of the theory of snow drifting[R]. Sydney:National Research Council of Canada Technical Translation, 1959:10.4224/20331411.
[40] Thorpe A D, Mason B J. The evaporation of ice spheres and ice crystals[J]. British Journal of Applied Physics, 1966, 17(4):541.
[41] Schmidt R A. Sublimation of wind-transported snow:A model[M]. Rocky Mountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture, 1972.
[42] Wever N, Lehning M, Clifton A, et al. Verification of moisture budgets during drifting snow conditions in a cold wind tunnel[J]. Water Resources Research, 2009, 45(7):171-183.
[43] Bintanja R, Reijmer C H. A simple parameterization for snowdrift sublimation over Antarctic snow surfaces[J]. Journal of Geophysical Research:Atmospheres, 2001, 106(D23):31739-31748.
[44] Dai X, Huang N. Numerical simulation of drifting snow sublimation in the saltation layer[J]. Scientific Reports, 2014, 4:6611.
[45] Huang N, Dai X, Zhang J. The impacts of moisture transport on drifting snow sublimation in the saltation layer[J]. Atmospheric Chemistry and Physics, 2016, 16(12):7523.
[46] Huang N, Shi G. The significance of vertical moisture diffusion on drifting snow sublimation near snow surface[J]. The Cryosphere, 2017, 11(6):3011.
[47] Wang Z, Huang N, Pähtz T. The effect of turbulence on drifting snow sublimation[J]. Geophysical Research Letters, 2019, 46(20):11568-11575.
[48] Purdy J C, Austin G L, Seed A W, et al. Radar evidence of orographic enhancement due to the seeder feeder mechanism[J]. Meteorological Applications:A Journal of Forecasting, Practical Applications, Training Techniques and Modelling, 2005, 12(3):199-206.
[49] Choularton T W, Perry S J. A model of the orographic enhancement of snowfall by the seeder-feeder mechanism[J]. Quarterly Journal of the Royal Meteorological Society, 1986, 112(472):335-345.
[50] Medina S, Houze R A. Air motions and precipitation growth in Alpine storms[J]. Quarterly Journal of the Royal Meteorological Society:A Journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography, 2003, 129(588):345-371.
[51] Stoelinga M T, Stewart R E, Thompson G, et al. Microphysical processes within winter orographic cloud and precipitation systems[M]//Mountain Weather Research and Forecasting. Dordrecht:Springer, 2013:345-408.
[52] Mott R, Schirmer M, Lehning M. Scaling properties of wind and snow depth distribution in an Alpine catchment[J]. Journal of Geophysical Research:Atmospheres, 2011, 116(D6), doi:10.1029/2010JD014886.
[53] Mott R, Scipión D, Schneebeli M, et al. Orographic effects on snow deposition patterns in mountainous terrain[J]. Journal of Geophysical Research:Atmospheres, 2014, 119(3):1419-1439.
[54] Zängl G. The temperature dependence of small-scale orographic precipitation enhancement[J]. Quarterly Journal of the Royal Meteorological Society:A Journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography, 2008, 134(634):1167-1181.
[55] Houze Jr R A. Orographic effects on precipitating clouds[J]. Reviews of Geophysics, 2012, 50(1), doi:10.1029/2011RG000365.
[56] Wang Z, Huang N. Numerical simulation of the falling snow deposition over complex terrain[J]. Journal of Geophysical Research:Atmospheres, 2017, 122(2):980-1000.
[57] Jordan R. A one-dimensional temperature model for a snow cover:Technical documentation for SNTHERM. 89[R]. Hanover NH:Cold Regions Research and Engineering Lab, 1991.
[58] Liston G E, Sturm M. A snow-transport model for complex terrain[J]. Journal of Glaciology, 1998, 44(148):498-516.
[59] Lehning M, Völksch I, Gustafsson D, et al. ALPINE3D:a detailed model of mountain surface processes and its application to snow hydrology[J]. Hydrological Processes:An International Journal, 2006, 20(10):2111-2128.
[60] Li G, Wang Z S, Huang N. A snow distribution model based on snowfall and snow drifting simulations in mountain area[J]. Journal of Geophysical Research:Atmospheres, 2018, 123(14):7193-7203.